В 2011 году канадская фирма D-Wave Systems объявила о старте продаж первого коммерческого квантового компьютера под названием D-Wave One. По заверениям фирмы, компьютер обладал микропроцессором на 128 кубит. В том же году команда исследователей из США, Китая и Японии объявила, что такой класс компьютеров может быть построен в соответствии с моделью архитектуры фон Неймана. В 2012 году IBM также сообщила, что сделаны значительные успехи в создании машины с такими характеристиками. Больше чем через полвека повторяется сценарий, имевший место с ENI АС, Colossus и другими компьютерами. Однако это не совсем верно, так как строительство квантового компьютера является настолько сложным проектом, что разные страны объединили усилия, создав многонациональные команды и оставив в прошлом межнациональное соперничество. Ожидается, что квантовый компьютер найдет применение не только в криптографии: с его помощью станет возможным более реалистическое моделирование, например воздействия медикаментов на человека, а также выполнение расчетов в физике, химии, астрономии и решение масштабных математических задач, таких как факторизация больших чисел.
Скорее из любопытства ученые уже создали квантовые версии игры «Жизнь» Конвея. Также в последнее время были предложены различные модели искусственных нейронных цепей, в которых нейроны симулируются квантовыми операторами, что открывает путь для дальнейших исследований в области квантового искусственного интеллекта. Еще одним применением квантового компьютера может стать генерация истинно случайных чисел, которые будут не псевдослучайными, а будто бы вытащенными из лотерейного барабана. Уже сегодня интернет дает возможность получить случайные числа с помощью квантовых феноменов (см. www.randomnumbers. info).
Сегодня мы можем создать только крайне усеченную версию квантового компьютера — с помощью обычного. Одним из таких примеров является jQuantum — программа, с помощью которой можно разработать элементарные цепи, используя стандартные квантовые операторы. Она позволяет разработать реестр данных, может хранить до 15 кубит, создать цепь и выполнить алгоритм.
Внезапно оборвавшаяся в 1954 году жизнь Алана Тьюринга не позволила ему закончить исследования в Манчестерском университете. Он как раз приступил к разработке моделей нейронных цепей, с помощью которых можно изучать так называемые «умные» машины, учитывая особенности работы человеческого мозга. В год смерти Тьюринга двое исследователей из Массачусетского технологического института, Бельмонт Фарли (1920-2008) и Уэсли Кларк (р. 1927), успешно смоделировали на компьютере сеть из 128 нейронов, которые могли распознавать простые модели после фазы обучения. Ученые отметили, что при уменьшении количества нейронов на 10% сеть не теряла способностей к распознаванию. Конечно, модель была элементарной, она состояла из нейронов, соединенных друг с другом случайным образом, каждое соединение было связано с определенным весом, и нейронная цепь вела себя подобно сети Маккалока — Питтса. Ее обучение происходило в соответствии с правилом Хебба, то есть когда один нейрон постоянно стимулировал другой, их синаптическая пластичность возрастала, и вес соединения между обоими нейронами увеличивался. В 1956 году, через два года после смерти Тьюринга, Джон Маккарти использовал термин искусственный интеллект на конференции по компьютерной симуляции поведения человека. Через год, в 1957 году, психолог Фрэнк Розенблатт (1928-1971) разработал перцептрон — первую искусственную нейронную сеть, имеющую практическое применение.
На основе этих моделей возникли другие модели искусственных нейронных сетей, например сети обратного распространения, с помощью которых можно более эффективно распознавать буквы, числа, фотографии и так далее. Сегодня как простые сети, так и сети обратного распространения широко используются, например, при классификации электронной почты для удаления нежелательных писем — спама, для распознавания речи и изображений, анализа электроэнцефалограммы (ЭЭГ) человека, распознавания сердечного ритма плода и отделения его от материнского — этот список можно продолжать очень долго. В течение нескольких лет искусственные нейронные сети применяются в интегрированных цепях — так называемых нейрочипах, которые вставляются в компьютер или другое оборудование с целью разработки приложений или интеллектуальных систем для решения самых разных проблем, в том числе и указанных выше. Потребовалось более полувека для того, чтобы идеи Тьюринга об умных машинах воплотились в жизнь.