В конце жизни Алан Тьюринг ставил передовые эксперименты по симуляции морфогенеза, то есть биологических процессов, протекающих при развитии организма. Для этой цели ученый использовал компьютеры Манчестерского университета. Тьюринг утверждал, что некоторые химические вещества (морфогены), физико-химические процессы (допустим, диффузия, то есть движение таких молекул, как морфогены), а также другие феномены, например активация или ингибиция (подавление), ответственны за процессы клеточной дифференциации, состоящей из этапов, которые проходит клетка от эмбриона до взрослого индивидуума. Центральной идеей была мысль о том, что положения, которые занимают недифференцированные, или неспециализированные клетки эмбриона, содержат записанную в морфогенах информацию, согласно которой морфогены контролируют развитие эмбриона. Этот процесс приводит к специализации клеток и превращению зародыша во взрослую особь. Так еще раз проявилась гениальность Тьюринга, предсказавшего существование морфогенов задолго до того, как они были открыты.
В настоящий момент модели искусственных нейронных сетей имеют широкое применение. В основном нейронные сети используют одну организационную модель: нейроны организованы слоями (вход, выход, возможны скрытые нейроны), их соединение осуществляется согласно определенному биологическому критерию — нейроны одного слоя соединяются с нейронами другого слоя. Пользователь устанавливает для сети пороги активации, функцию активации или передачи, другие параметры. И все же, несмотря на схожую организацию всех искусственных нейронных сетей, имеется один отличительный элемент — алгоритм обучения. В парадигме искусственного разума обучение — процесс, в результате которого нейронная сеть изменяет ответ, или выход, при определенном входе. Это изменение является результатом настройки одного или нескольких соединений и их веса. Существует множество методов настройки веса соединений сети, с помощью которых сеть обучается распознавать образцы (буквы, числа, фотографии и так далее). В других случаях сеть просто запоминает образец без обучения, то есть настройка веса соединений не требуется. Ни модель Маккалока — Питтса, ни модель Тьюринга не были способны к обучению, так как для этого потребовалась разработка специального алгоритма. Обучаемые модели могут эмулировать операторы И, ИЛИ и другие, то есть они ближе к машине Тьюринга, чем к биологической нейронной сети. Одна из лучших программ для изучения искусственных нейронных сетей — Штутгартский симулятор нейронной сети (SNNS).
Штутгартский симулятор нейронной сети (SNNS).
В 1960-е годы биолог Льюис Вольперт (р. 1929) усовершенствовал понятие морфогена, введенное Тьюрингом, после открытия первого белка, имеющего такие характеристики, у уксусной мушки Drosophila melanogaster. Морфогенами могут быть различные химические вещества, от белков до витаминов, в их функции входит контроль генов — наследственных единиц. Однако учитывая, что ген — фрагмент ДНК, его действие не было понятно до открытия структуры ДНК Джеймсом Уотсоном (р. 1928) и Фрэнсисом Криком (1916-2004) в 1953 году, за год до смерти Тьюринга. Сегодня модель морфогенеза Тьюринга, с помощью которой он объяснил формирование полосок на шкуре зебр, применена к другим животным и доказана экспериментально. Ее высоко оценили такие специалисты по теоретической биологии, как Льюис Вольперт и Ганс Мейнхардт (р. 1938). Однако некоторые исследователи утверждают, что механизм морфогенеза отличается от представленного Тьюрингом. На самом деле клетки эмбриона следуют определенному глобальному плану и специализируются вследствие серии трансформаций, которые можно объяснить их механическими свойствами.
Памятник Алану Тьюрингу в Садах Витворта в Манчестере. Яблоко в руке напоминает о способе самоубийства.
Марка в память об Алане Тьюринге, выпущенная в 2012 году.
Памятное изображение в честь столетия со дня рождения Алана Тьюринга, которое отмечалось в 2012 году.
Jmol - Java-программа визуализации, с помощью которой можно увидеть трехмерные структуры химических соединений, кристаллов, материалов и биомолекул. Один из самых интересных примеров — молекула ДНК, ее можно поворачивать, увеличивать или уменьшать, менять тип изображения и так далее. ДНК — полимер, имеющий структуру двойной спирали из повторяющихся блоков, нуклеотидов — аденина (А), цитозина (С), гуанина (G) и тимина (Т). Нуклеотиды одной спирали составляют пары с нуклеотидами другой спирали: А с Т, G с С, определяя на каждой спирали последовательности — гены, в которых хранится биологическая информация, передаваемая из поколения в поколение.