Выбрать главу

get_cpu_ptr(ptr); /* возвращает указатель типа void на данные,

        соответствующие параметру ptr, связанные с текущим процессом */

put_cpu_ptr(ptr); /* готово, разрешаем вытеснение кода в режиме ядра */

Макрос get_cpu_ptr() возвращает указатель на экземпляр данных, связанных с текущим процессором. Этот вызов также запрещает вытеснение кода в режиме ядра, которое снова разрешается вызовом функции put_cpu_ptr().

Рассмотрим пример использования этих функций. Конечно, этот пример не совсем логичный, потому что память обычно необходимо выделять один раз (например, в некоторой функции инициализации), использовать ее в разных необходимых местах, а затем освободить также один раз (например, в некоторой функции, которая вызывается при завершении работы). Тем не менее этот пример позволяет пояснить особенности использования.

void *percpu_ptr;

unsigned long *foo;

percpu_ptr = alloc_percpu(unsigned long);

if (!ptr)

 /* ошибка выделения памяти ... */

foo = get_cpu_ptr(percpu_ptr);

/* работаем с данными foo ... */

put_cpu_ptr(percpu_ptr);

Еще одна функция — per_cpu_ptr() — возвращает экземпляр данных, связанных с указанным процессором.

per_cpu_ptr(ptr, cpu);

Эта функция не запрещает вытеснение в режиме ядра. Если вы "трогаете" данные, связанные с другим процессором, то, вероятно, необходимо применить блокировки.

Когда лучше использовать данные, связанные с процессорами

Использование данных, связанных с процессорами, позволяет получить ряд преимуществ. Во-первых, это ослабление требований по использованию блокировок. В зависимости от семантики доступа к данным, которые связаны с процессорами, может оказаться, что блокировки вообще не нужны. Следует помнить, что правило "только один процессор может обращаться к этим данным" является всего лишь рекомендацией для программиста. Необходимо специально гарантировать, что каждый процессор работает только со своими данными. Ничто не может помешать нарушению этого правила.

Во-вторых, данные, связанные с процессорами, позволяют существенно уменьшить недостоверность данных, хранящихся в кэше. Это происходит потому, что процессоры поддерживают свои кэши в синхронизированном состоянии. Если один процессор начинает работать с данными, которые находятся в кэше другого процессора, то первый процессор должен обновить содержимое своего кэша. Постоянное аннулирование находящихся в кэше данных, именуемое перегрузкой кэша (cash thrashing), существенно снижает производительность системы. Использование данных, связанных с процессорами, позволяет приблизить эффективность работы с кэшем к максимально возможной, потому что в идеале каждый процессор работает только со своими данными.

Следовательно, использование данных, которые связаны с процессорами, часто избавляет от необходимости использования блокировок (или снижает требования, связанные с блокировками). Единственное требование, предъявляемое к этим данным для безопасной работы, — это запрещение вытеснения кода, который работает в режиме ядра. Запрещение вытеснения — значительно более эффективная операция по сравнению с использованием блокировок, а существующие интерфейсы выполняют запрещение и разрешение вытеснения автоматически. Данные, связанные с процессорами, можно легко использовать как в контексте прерывания, так и в контексте процесса. Тем не менее следует обратить внимание, что при использовании данных, которые связаны с текущим процессором, нельзя переходить в состояние ожидания (в противном случае выполнение может быть продолжено на другом процессоре).

Сейчас нет строгой необходимости где-либо использовать новый интерфейс работы с данными, которые связаны с процессорами. Вполне можно организовать такую работу вручную (на основании массива, как было рассказано ранее), если при этом запрещается вытеснение кода в режиме ядра. Тем не менее новый интерфейс более простой в использовании и, возможно, позволит в будущем выполнять дополнительные оптимизации. Если вы собираетесь использовать в своем коде данные, связанные с процессорами, то лучше использовать новый интерфейс. Единственный недостаток нового интерфейса — он не совместим с более ранними версиями ядер.

Какой способ выделения памяти необходимо использовать

Если необходимы смежные страницы физической памяти, то нужно использовать один из низкоуровневых интерфейсов выделения памяти, или функцию kmalloc(). Это стандартный способ выделения памяти в ядре, и, скорее всего, в большинстве случаев следует использовать именно его. Необходимо вспомнить, что два наиболее часто встречающихся флага, которые передаются этой функции, это флаги GFP_ATOMIC и GFP_KERNEL. Для высокоприоритетных операций выделения памяти, которые не переводят процесс в состояние ожидания, необходимо указывать флаг GFP_ATOMIC. Это обязательно для обработчиков прерываний и других случаев, когда нельзя переходить в состояние ожидания. В коде, который может переходить в состояние ожидания, как, например код, выполняющийся в контексте процесса и не удерживающий спин-блокировку, необходимо использовать флаг GFP_KERNEL. Такой флаг указывает, что должна выполняться операция выделения памяти, которая при необходимости может перейти в состояние ожидания для получения необходимой памяти.

Если есть необходимость выделить страницы верхней памяти, то следует использовать функцию alloc_pages(). Функция alloc_pages() возвращает структуру struct page, а не логический адрес. Поскольку страницы верхней памяти могут не отображаться в адресное пространство ядра, единственный способ доступа к этой памяти — через структуру struct page. Для получения "настоящего" указателя на область памяти необходимо использовать функцию kmap(), которая позволяет отобразить верхнюю память в логическое адресное пространство ядра.

Если нет необходимости в физически смежных страницах памяти, а необходима только виртуально непрерывная область памяти, то следует использовать функцию vmalloc() (также следует помнить о небольшой потере производительности при использовании функции vmalloc() по сравнению с функцией kmalloc()). Функция vmalloc() выделяет область памяти, которая содержит только виртуально смежные страницы, но не обязательно физически смежные. Это выполняется почти так же, как и в программах пользователя путем отображения физически несмежных участков памяти в логически непрерывную область памяти.

Если необходимо создавать и освобождать много больших структур данных, то следует рассмотреть возможность построения слябового кэша. Уровень слябового распределения памяти позволяет поддерживать кэш объектов (список свободных объектов), уникальный для каждого процессора, который может значительно улучшить производительность операций выделения и освобождения объектов. Вместо того чтобы часто выделять и освобождать память, слябовый распределитель сохраняет кэш уже выделенных объектов. При необходимости получения нового участка памяти для хранения структуры данных, уровню слябового распределения часто нет необходимости выделять новые страницы памяти, вместо этого можно просто возвращать объект из кэша.

Глава 12

Виртуальная файловая система

Виртуальная файловая система (Virtual File System), иногда называемая виртуальным файловым коммутатором (Virtual File Switch) или просто VFS, — это подсистема ядра, которая реализует интерфейс пользовательских программ к файловой системе. Все файловые системы зависят от подсистемы VFS, что позволяет не только сосуществовать разным файловым системам, но и совместно функционировать. Это также дает возможность использовать стандартные системные вызовы для чтения и записи данных на различные файловые системы, которые находятся на различных физических носителях, как показано на рис. 12.1.