Выбрать главу

Мы не знаем, к чему привел бы эксперимент без отбора Уоддингтоном «наилучших» bithorax. Может быть, за тридцать поколений он произвел бы популяцию, иммунную по отношению к эфиру, или, как можно себе также представить, популяцию, нуждающуюся в эфире. Но возможно – если модификация bithorax, подобно большинству соматических изменений, отчасти адаптивна – что популяция, подобно экспериментальным популяциям Уоддингтона, произвела бы генетические копии  (генокопии) результатов эфирной обработки.

Этим новым словом «генокопия» я хочу подчеркнуть, что соматическое изменение может в действительности предшествовать генетическому, так что более уместно рассматривать в качестве копии генетическое изменение. Иными словами, соматические изменения могут отчасти определять пути эволюции; и это будет еще больше проявляться в более обширных гештальтах (in larger gestalten), чем в рассматриваемых здесь. Это значит, что мы должны снова расширить набор логических типов в нашей гипотезе. Таким образом, можно различить три этапа в построении теории:

а. На индивидуальном уровне окружающая среда и опыт могут вызвать соматическое изменение, но не могут повлиять на гены индивида. Не существует прямого наследования в смысле Ламарка, и такое наследование  без отбора необратимо уничтожило бы соматическую гибкость.

б. На уровне популяций, при надлежащем отборе фенотипов, окружающая среда и опыт порождают более приспособленных индивидов, над которыми может работать отбор. В этом смысле популяция ведет себя как ламарков индивид. Несомненно, именно по этой причине биологический мир выглядит как результат ламарковой эволюции.

в. Но если мы хотим доказать, что соматические изменения играют  первичную роль в направлении эволюционного изменения, то для этого требуется другой уровень логических типов – более широкий гештальт. Для этого приходится привлечь коэволюцию, предположив, что окружающая экосистема или некоторые смежные виды изменяются, чтобы приспособиться к соматическим изменениям индивидов. Можно представить себе, что такое изменение окружения действует как матрица, предпочитающая какую-нибудь генокопию соматического изменения.

4. ГЕНЕТИЧЕСКИЙ КОНТРОЛЬ СОМАТИЧЕСКОЙ ИЗМЕНЧИВОСТИ

Другой аспект коммуникации между генами и развитием фенотипа обнаруживается, когда мы ставим вопрос о генетическом контроле соматической измененчивости.

Конечно, генетический вклад во все соматические явления есть всегда. Будем рассуждать следующим образом: если человек загорел на солнце, можно сказать, что это соматическое изменение вызвано солнечным облучением соответствующих длин волн, и так далее. Если после этого закрыть человека от солнца, его загар исчезнет, и если он белокур, он снова приобретет свой розоватый цвет. При дальнейшем облучении он снова загорит, и так далее. Человек меняет цвет, когда его облучают солнечным светом, но его способность изменяться таким образом не затрагивается тем, подвергался ли он солнечному облучению, или закрывался от него – по крайней мере я так думаю.

Но можно себе представить (а в более сложных процессах обучения это очевидно), что  способность добиваться определенных соматических изменений может быть предметом обучения. Дело обстоит так, как будто человек может увеличить или уменьшить свою способность загорать при облучении солнечным светом. В таком случае способность добиться метаизменения могла бы полностью контролироваться генетическими факторами. Затем, можно представить себе, что существует способность  изменять способность к изменению. И так далее. Но ни в каком реальном случае невозможно бесконечное число таких шагов.

Следовательно, этот ряд всегда должен кончиться на геноме, и кажется вероятным, что в большинстве случаев обучения и соматического изменения число уровней соматического контроля невелико. Мы можем учиться, учиться учиться, может быть, учиться учиться учиться. Но это, вероятно, уже конец последовательности.

Ввиду этих соображений не имеет смысла спрашивать, определяется ли данный признак организма его генами, или соматическими изменениями и обучением. Не существует фенотипических признаков, не зависящих от генов.

Более уместно было бы спросить, на каком уровне логических типов генетическая команда воздействует на определение этого признака. Ответ на этот вопрос всегда имеет вид: На ближайшем  более высоком логическом уровне, чем наблюдаемая способность организма к обучению или телесному изменению посредством соматического процесса.

Вследствие этой ошибки в распознавании логических уровней генетического и соматического изменения, почти все сравнения, оперирующие понятиями «гения», унаследованных «способностей» и тому подобным, становятся нелепыми.

5. В ЭПИГЕНЕЗЕ «НИЧТО НЕ ВОЗНИКАЕТ ИЗ НИЧЕГО»

Как я уже заметил, эпигенез относится к эволюции, как разработка тавтологии к творческой мысли. В эмбриологии живого организма не только нет надобности в новой информации или в изменении плана, но большей частью эпигенез должен быть защищен от вторжения новой информации. Путь к этому – тот же, каким был всегда. Развитие зародыша должно следовать аксиомам и постулатам, изложенным в ДНК, или где-нибудь еще. На языке Главы 2, эволюция и обучение неизбежно  дивергентны и непредсказуемы, а эпигенез должен быть конвергентным.

Отсюда следует, что в области эпигенеза случаи, когда требуется новая информация, редки и бросаются в глаза. Напротив, должны быть случаи, хотя и патологические, где недостаток или потеря информации приводит к серьезным расстройствам развития. В этом контексте, явления симметрии и асимметрии оказываются богатым источником примеров. Правила, которыми должен руководствоваться ранний эмбрион в этих отношениях, просты и формальны, так что их присутствие или отсутствие нельзя не заметить.

Наиболее известные примеры происходят из экспериментального изучения эмбриологии амфибий, и я рассмотрю здесь некоторые явления, связанные с симметрией яйца лягушки. То, что известно о лягушке, вероятно, справедливо для всех позвоночных.

Кажется, без информации из внешнего мира неоплодотворенное яйцо лягушки не имеет необходимой информации (т.е. необходимого различия) для достижения двусторонней симметрии. В яйце есть два дифференцированных полюса: животный полюс, где протоплазма преобладает над желтком, и  растительный полюс, где преобладает желток. Но в нем нет дифференциации меридианов, или линий долготы. В этом смысле яйцо радиально симметрично.

Несомненно, дифференциация животного и растительного полюсов определяется положением яйца в фолликулярной [Фолликула (здесь): мешочек, содержащий яйцеклетку. – Прим. перев.] ткани, или плоскостью последнего клеточного делении при образовании гаметы [Половая клетка животного или растения. – Прим. перев.]; эта плоскость, в свою очередь, вероятно, определяется положением материнской клетки в фолликуле. Но это еще не все, что требуется.

Без некоторой дифференциации сторон или меридианов неоплодотворенного яйца оно не может «знать» или «решить», какова должна быть будущая средняя плоскость симметрии двусторонне симметричной лягушки. Эпигенез не может начаться, пока один из меридианов не будет выделен по сравнению с другими. К счастью, в этом случае мы знаем, как доставляется эта решающая информация. Она неизбежно приходит из внешнего мира: это точка входа сперматозоида. Как правило, сперматозоид входит в яйцо несколько ниже экватора, и меридиан, содержащий оба полюса и точку входа, определяет среднюю плоскость двусторонней симметрии лягушки. Первая сегментация яйца следует этому меридиану, и та сторона яйца, где входит сперматозоид, становится брюшной стороной лягушки.