Системе также известно, что рекламировать «Гордость и предубеждение» тому,
кто покупает научно-фантастические романы (а именно это происходит при классических маркетинговых кампаниях), — пустая трата времени. В рамках традиционной маркетинговой кампании выход нового издания «Гордости и предубеждения» мог быть объявлен, к примеру, в тематической программе о книгах, выходящей в эфир в 23:00 на канале, посвященном культуре. Но даже если бы маркетологи верно выбрали программу и время ее выхода в эфир так, чтобы ее с большой вероятностью посмотрели люди, заинтересованные в продукте, на многих любителей научной фантастики реклама не произвела бы никакого эффекта. При использовании статического канала маркетинга, например телевидения, радио или афиш на улицах, рекламодатель не может определить индивидуальный профиль клиента. И даже если профиль клиента известен, рекламодатель не располагает необходимыми средствами для того, чтобы адаптировать рекламу для каждого из нас.
Робототехника — одна из самых сложных областей инженерии, и не только потому, что в простой руке робота используется множество сервоприводов и электронных устройств. Ее сложность связана с тем, что траектории движения подвижных частей робота определяются путем сложных математических расчетов. В некоторых случаях все расчеты выполняются в искусственном мозге робота, состоящем, подобно мозгу высших живых организмов, из нейронных сетей. Но в случае с роботами речь идет об искусственных нейронах.
Схематичное изображение нейрона человеческого мозга.
Понятия «нейронная сеть» и «искусственный нейрон» появились не так давно, и эйфория по отношению к ним уже не раз сменялась разочарованием. Эти понятия возникли как составляющие алгоритма Threshold Logic Unit (блок пороговой логики), который был предложен Уорреном Маккалоком и Уолтером Питтсом в 1940-е годы и имел большой успех. Искусственный нейрон, по сути, представляет собой инкапсуляцию указанного алгоритма. Специалисты описывают искусственный нейрон следующим образом:
Вход1 —> X1
Вход2 —> Х2
…
Входi —> Xi
Если > Пороговое значение,
то Выход <— 1
иначе Выход <— 0
На обычном языке это означает: нейрон возбуждается тогда и только тогда, когда стимул, то есть сумма произведений (Xi∙Весi), превышает определенное пороговое значение.
Как вы можете видеть, нейрон крайне прост, поскольку требует лишь нескольких арифметических действий и одну операцию сравнения. Простота искусственных нейронов способствовала их реализации в микрочипах. К концу 90-х годов стала возможной полная реализация искусственных нейронных сетей исключительно в аппаратном обеспечении. Сегодня эти микрочипы используются при изготовлении электронных прогнозных устройств, к примеру, приборов, позволяющих определить причину недомогания плачущего ребенка.
Искусственный нейрон функционирует аналогично естественному. Но основная сложность нейронных сетей заключается в двух элементах, которые должны согласовываться между собой. Именно от них зависит, сможет ли нейронная сеть делать более или менее точные прогнозы. Эти два элемента — вес входных сигналов и пороговое значение. Трудоемкая корректировка этих значений, по результатам которой для ряда входных значений нейрон должен выдавать желаемое выходное значение, называется обучением. Прорыв в обучении нейронов совершил Фрэнк Розенблатт в конце 1950-х, предложив модель нейрона, способного корректировать веса и пороговое значение. Модель Розенблатта получила название перцептрон.