Выбрать главу

Число взаимодействий «жертва — хищник», как мы показали, равно cPD. Следовательно, новое уравнение, описывающее численность хищников, будет выглядеть так:

D(t+1) = D(t) + nD(t)mD(t) + r[cP(t)D(t)]

Изменение численности жертв будет происходит прямо противоположным образом: при любом взаимодействии «хищник — жертва» численность жертв будет сокращаться. Уравнение численности жертв будет иметь вид:

P(t+1) = P(t) + r[P(t)m'P(t)r[cP(t)D(t)].

Если теперь мы зафиксируем значения постоянных и будем решать эти уравнения для последовательных моментов времени, то увидим, что D(t) и P(t) будут колебаться, а хищники и жертвы будут последовательно переживать циклы изобилия и голода.

График, описывающий колебания численности зайцев и лис с течением времени согласно модели Лотки — Вольтерры.

Третье свойство: формирование потоков

Потоки возникают на всех уровнях сложных адаптивных систем, где присутствуют узлы, носители и переносимые ресурсы. Ограничимся двумя примерами сложных адаптивных систем. Первый — центральная нервная система живого организма, где узлами являются нейроны, носителями — соединяющие их синапсы, а переносимым ресурсом — электрические импульсы. Второй пример — потоки в экосистеме, где узлами являются виды, носителем — пищевая цепь, а переносимым ресурсом — энергия, представленная в виде биохимических элементов (потребляемого белка, сахара и так далее).

В общем случае узлы являются средствами обработки ресурса, а связи определяют взаимодействия между узлами. Следует учесть, что в сложной адаптивной системе сеть взаимодействий может меняться, а узлы и связи могут возникать и исчезать.

Эти особенности и обеспечивают адаптируемость системы к среде и позволяют ей корректировать свое поведение в зависимости от текущей ситуации.

Нанесение меток — один из самых важных механизмов сложных адаптивных систем для определения потоков: метки могут определять, какие связи играют важнейшую роль при переносе ресурсов.

Потоки обладают двумя свойствами, представляющими интерес при изучении работы сложных адаптивных систем. Первое свойство заключается в том, что потоки вносят в систему эффект мультипликатора. К примеру, в такой сложной адаптивной системе, как экономика страны, перенос денег от одного узла к другому (например, между банками) исполняет роль денежного мультипликатора. Второе интересное свойство — способность создания циклов с целью переработки. Обратите внимание, как на схеме нелинейно возрастает объем промышленного производства в сложной адаптивной системе — производственной цепочке изготовления автомобилей — при переработке и в ее отсутствие.

В первом сценарии производитель стали преобразует железную руду в сталь с эффективностью 100 % (то есть с коэффициентом 1). Далее 50 %, то есть половина произведенной стали, используется для производства автомобилей, оставшиеся 50 % — для изготовления бытовой техники. Если мы для простоты предположим, что из каждой единицы стали изготавливается автомобиль или единица бытовой техники, то получим, что в конце потока будет произведено 5 автомобилей и 5 единиц бытовой техники.

Теперь рассмотрим сценарий, в котором благодаря переработке возникает эффект мультипликатора.

Во втором сценарии 75 % автомобилей перерабатывается. Следовательно, теперь производитель стали может повысить объемы производства, что в конечном итоге позволит выпускать больше автомобилей. Если на первом этапе переработке подвергалось 5 автомобилей, то с последовательным повышением производительности система стабилизируется на уровне 8 выпускаемых машин и 6 машин, подвергаемых переработке, на каждом цикле. Это означает, что производство стали возрастет до 16 единиц: 10 единиц будет выплавляться из 10 единиц железной руды, еще шесть будет получено в результате переработки автомобилей.

Четвертое свойство: разнообразие

Разнообразие — еще одна определяющая характеристика сложных адаптивных систем. В любой сложной адаптивной системе наблюдается значительное разнообразие агентов, которые совместно определяют шаблоны поведения системы. В качестве примера приведем тропический лес, где можно пройти полкилометра и не увидеть двух деревьев одного вида. Или рассмотрим такую сложную адаптивную систему, как целый город, к примеру Рим, где живут миллионы самых разных людей со своими занятиями и особенностями, где работают тысячи компаний, по большей части непохожих друг на друга, при этом каждая из этих компаний, в свою очередь, также представляет собой сложную адаптивную систему.