Выбрать главу

Такое разнообразие вовсе не случайно. Каждый агент в рамках системы занимает свою нишу, которая определяется его связями с соседними агентами. Если мы исключим из сложной адаптивной системы один агент, другие автоматически займут его место. Когда система прекращает адаптироваться к условиям среды, наступает стабильное состояние, иными словами наблюдается сходимость.

Разнообразие также наблюдается, когда агент или совокупность агентов занимают новые ниши, в результате чего сложная адаптивная система получает новые функциональные возможности. Хороший пример — мимикрия, в ходе которой, к примеру, цветки орхидей имитируют внешний вид насекомых, чтобы привлечь других насекомых — переносчиков пыльцы и сделать опыление более эффективным.

Цветки растения офрис пчелоносная имитируют насекомых, чтобы привлечь других насекомых — переносчиков пыльцы.

Однако главный вопрос звучит так: какой фактор допускает и даже стимулирует возникновение столь большого разнообразия в сложных адаптивных системах? При подробном изучении таких систем можно последовательно проследить, какие изменения они претерпевали в процессе возникновения того или иного агента, и тем самым понять роль отдельных агентов в системе. К примеру, когда в сложной адаптивной системе в результате адаптации возникают циклические потоки, что ведет к переработке ресурсов и повышению общей эффективности, в ней открываются ниши, где появляются новые, «перерабатывающие» агенты. Другой пример сценария, порождающего разнообразие, — рост предприятия: в процессе роста возникает необходимость в новых иерархиях и, следовательно, в агентах нового типа, которые будут отвечать за координацию действий на каждом уровне иерархии.

Второй механизм: внутреннее моделирование

Любая сложная адаптивная система способна создавать внутренние модели окружающей среды, позволяющие предсказать будущие события и изменения, которые должны произойти для успешной адаптации системы к этим событиям. Такие модели строятся на основе информационных потоков, поступающих в систему и вызывающих полезные изменения ее внутренней структуры. После того как модель построена, она помогает системе предсказывать, какие последствия будет иметь появление определенных закономерностей в среде. Но как система может представить накопленный опыт в виде моделей? Как система создаст модель для прогноза последствий будущих событий?

Оптимальной движущей силой для создания подобных моделей является давление отбора. Бактерия всегда «знает», что ей нужно следовать в направлении, где находится больше питательных веществ. Этот «инстинкт» описывается внутренней моделью, указывающей, что если бактерия будет следовать подобной схеме поведения, то с наибольшей вероятностью гарантирует себе пропитание. Бактерии, которые благодаря кодификации структур и иерархий внутренних агентов смогли создать подобные модели, имеют больше шансов оставить потомство и, следовательно, передать ему это отличительное свойство.

Существует два вида внутренних моделей: явные и неявные. В примере с бактерией, следующей инстинктам в поиске питания, мы имеем дело с неявной моделью, так как она не позволяет ни «думать», ни моделировать альтернативные варианты развития событий. Явные модели, свойственные высшим живым организмам, напротив, позволяют оценивать различные гипотетические сценарии и принимать оптимальные решения после анализа альтернативных вариантов. Примером явной модели в сложной адаптивной информационной системе может служить машина для игры в шахматы, способная анализировать сотни тысяч вариантов на каждом ходу.

Логично, что неявная модель создается и адаптируется к среде по законам эволюции, в то время как для явных моделей скорость адаптации намного выше.

Колония бактерий Escherichia coli, увеличенная в 10 000 раз. Каждая «палочка» обозначает бактерию.