Выбрать главу

Гэрберт Саймон (слева) и Аллен Ньюэлл за игрой в шахматы, 1958 год.

В Logic Theorist использовались так называемые символьные системы, созданные математиками, чтобы придать смысл некоторым выражениям и уйти от произвольных обозначений. К примеру, мы можем утверждать: высказывание «быть человеком» означает «быть смертным», что можно записать математически как А —> В, где символ А эквивалентен высказыванию «быть человеком», символ —> — «означает», а В равносильно высказыванию «быть смертным». «Быть человеком означает быть смертным» — это произвольное высказывание, которое записывается выражением А —> В. После формализации всех произвольных членов выполнять операции с ними намного проще с точки зрения математики и информатики.

Для упрощения математических действий символьные системы опираются на аксиомы, из которых выводятся теоремы. Преимущество символьных систем в том, что они являются формальными и однозначно определенными, поэтому программировать их сравнительно просто. Рассмотрим пример:

Сократ — человек.

Все люди смертны.

Следовательно, Сократ смертен, поскольку он — человек.

Если мы запишем эти высказывания в формальном виде, они будут выглядеть так:

А: Сократ

В: человек (люди)

А —> В

С: смертен (смертны)

В —> С

Если А —> В и В —> С, то А —> С, то есть Сократ смертен.

В этом случае правило вывода под названием «гипотетический силлогизм» позволяет заключить, что А —> С истинно, если А —> В и В —> С.

Тем не менее число вариантов, полученных при автоматическом и систематическом выводе теорем на основе аксиом и правил вывода, будет опасно близко к числу атомов во Вселенной. По этой причине в машине Logic Theorist использовались эвристические рассуждения, то есть методы нечеткого прогнозирования, которые помогали выбрать лучшие производные высказывания среди возможных. Отобранные высказывания определяли правильную последовательность выводов, позволявших прийти от аксиом к доказательству теорем.

Рассмотрим практический пример. Мы хотим знать, смертен ли Сократ. Нам известны следующие исходные аксиомы:

А: Сократ

В: болельщик «Олимпиакоса

С: грек

D: человек

Е: смертен

А —> С

С —> D

A —> D

С —> Б

D —> E

Определим, истинно или ложно А —> Е, с помощью «грубой силы», то есть путем перебора всех возможных сочетаний. Имеем:

А —> С —> D —> Е

A —> С —> В

A —> D —> E

Мы выполнили семь логических операций, взяв за основу всего пять аксиом и одно правило вывода — гипотетический силлогизм. Легко догадаться, что в сценариях, содержащих больше аксиом и правил вывода, число возможных сочетаний может оказаться столь велико, что на получение доказательств уйдут годы. Чтобы решить эту проблему так, как это сделали Саймон и Ньюэлл, используем эвристическое рассуждение (или эвристику). В нашем примере эвристика подскажет: если мы хотим доказать, что некий человек смертен, нет необходимости заводить разговор о футболе (А —> С —> В).

И символьные, и эвристические системы широко используются для решения практических задач, а не только для автоматического доказательства теорем.

Приведем еще один пример использования эвристик. На каждом ходу в шахматной партии существует в среднем 37 возможных вариантов. Следовательно, если компьютерная программа будет анализировать партию на восемь ходов вперед, на каждом ходу ей придется рассмотреть 378 возможных сценариев, то есть 3512479453921 ходов — более 3,5 млрд вариантов. Если компьютер тратит на анализ каждого варианта одну микросекунду, то при анализе партии всего на восемь ходов вперед (достаточно простая задача для профессионального шахматиста) мощный компьютер будет думать над каждым ходом больше двух с половиной лет!