Для ускорения процесса нужны какие-то улучшения, которыми и будут эвристики. Эвристики — это правила прогнозирования, позволяющие исключить из рассмотрения ходы, которые ведут к очень невыгодной позиции и поэтому нецелесообразны. Уже благодаря тому, что эвристики позволяют исключить из рассмотрения несколько абсурдных ходов, число анализируемых вариантов существенно сокращается. Таким образом, эвристики — это средства прогнозирования, основанные на интуиции программиста, которые играют столь важную роль в большинстве интеллектуальных систем, что в значительной степени определяют их качество.
* * *
МАТЕМАТИЧЕСКАЯ ЛОГИКА
Математическая логика — раздел математики, занимающийся изучением схем и принципов рассуждений. Это дисциплина, в которой на основе различных правил и методов определяется корректность аргумента. Логика широко используется в философии, математике и информатике как средство проверки корректности имеющихся утверждений и вывода новых. Математическая логика была создана на основе аристотелевой логики Джорджем Булем, автором новой алгебры, которую впоследствии назвали булевой, и Огастесом де Морганом, сформулировавшим законы логики с помощью новой, более абстрактной нотации.
В последние 50 лет математическая логика пережила бурный рост, и на ее основе возникла современная логика, которую следует отличать от классической логики, или логики первого порядка. Формально логика первого порядка рассматривает только конечные выражения и правильно построенные формулы. В ней нет места бесконечным множествам и неопределенности.
Сколь бы сложными ни казались выражения, записанные на доске, в них очень редко используются символы, значение которых выходит за рамки логики первого порядка.
* * *
В последние годы непрерывно развиваются автоматические рассуждения, и теперь интеллектуальные системы способны рассуждать в условиях недостатка информации (неполноты), при наличии противоречивых исходных утверждений (в условиях неопределенности) или в случаях, когда при вводе новых знаний в систему объем совокупных знаний о среде необязательно возрастает (в условиях немонотонности).
Крайне мощным инструментом для работы в этих областях является нечеткая логика — разновидность математической логики, в которой высказывания необязательно абсолютно истинны или абсолютно ложны. Если в классической математической логике о любом высказывании всегда можно сказать, истинно оно или ложно (к примеру, ложным будет высказывание «некий человек не смертен», а истинным — «все люди смертны»), то в нечеткой логике рассматриваются промежуточные состояния. Так, если раньше говорили, что Крез не беден, это автоматически означало, что он богат, а если говорили, что Диоген не богат, это означало, что он беден (в этом примере классическая логика явно дискриминирует представителей среднего класса!). Применив нечеткую логику, мы можем сказать, что Аристотель богат со степенью, например, 0,6.
* * *
ДЖОРДЖ БУЛЬ (1815–1864) И ЕГО ЛОГИКА
Если Алана Тьюринга называют одним из отцов современной информатики, то Джорджа Буля можно назвать ее дедом. Этот британский философ и математик создал булеву алгебру — основу современной компьютерной арифметики, которая, в свою очередь, является фундаментом всей цифровой электроники.
Буль разработал систему правил, которые посредством математических методов позволяют выражать и упрощать логические задачи, в которых допускается только два состояния — «истина» и «ложь». Три основные математические операции булевой алгебры — это отрицание, объединение («или») и пересечение («и»). Отрицание, обозначаемое символом заключается в смене значения переменной на противоположное. К примеру, если А = «Аристотель — человек», то ¬А = «Аристотель — не человек». Объединение, обозначаемое символом v — это бинарная операция, то есть операция, в которой для получения результата требуются два аргумента. Результатом объединения будет истина, если один из двух аргументов истинный.
К примеру: «Верно ли, что сейчас вы либо читаете, либо ведете машину?». Ответом на этот вопрос будет «Да, верно», поскольку сейчас вы читаете эту книгу. Но если бы вы вели машину и не читали книгу, то ответ также был бы утвердительным. Он был бы утвердительным и в том случае, если бы вы, пренебрегая всеми соображениями безопасности, вели машину и читали эту книгу одновременно.