Выбрать главу

Приложение. Разговор с «Элизой»

В первой главе мы уже привели короткий разговор с «Элизой» — «автоматическим психологом», созданным Джозефом Вейценбаумом. В этом приложении я приведу запись еще одного реального разговора, на этот раз более продолжительного, чтобы читатель смог оценить поведение программы в чуть более широком контексте.

Разумеется, все изложенные мной доводы абсолютно вымышленны и приведены в иллюстративных целях.

Элиза: Привет. Как дела? Расскажи о своей проблеме.

Игнаси Белда: У меня стресс.

Элиза: Как давно у тебя стресс?

Игнаси Белда: С тех пор, как мой редактор сказал, что я должен быстрее работать над книгой.

Элиза: А почему редактор требует, чтобы ты быстрее работал над книгой?

Игнаси Белда: Потому что он хочет, чтобы я закончил книгу до января.

Элиза: Это настоящая причина?

Игнаси Белда: Мне кажется, на редактора тоже оказывается давление.

Элиза: Можешь объяснить подробнее?

Игнаси Белда: Он сказал, что ему нужно достаточно книг для срочной публикации.

Элиза: И это объясняет, почему он хочет, чтобы ты быстрее работал над книгой?

Игнаси Белда: А что думаешь ты?

Элиза: Почему ты меня об этом спрашиваешь?

Игнаси Белда: Потому что это очевидно.

Элиза: А какие еще причины приходят тебе в голову?

Игнаси Белда: Мне кажется, что другие авторы задерживают сдачу рукописей.

Элиза: Ты имеешь в виду, что они задерживают сдачу рукописей по какой-то причине?

Игнаси Белда: Так сказал редактор.

Элиза: Тебе не кажется, что этому есть еще какая-то причина?

Игнаси Белда: Нет, все дело в том, что на него тоже оказывается давление.

Элиза: Ты несколько склонен к отрицанию.

Игнаси Белда: Почему ты так говоришь?

Элиза: Эта тема тебя интересует?

Игнаси Белда: Да, мне интересно знать, почему тебе кажется, будто я немного склонен к отрицанию.

Элиза: Я вижу.

Здесь автор устал ходить по кругу и прекратил разговор. Читатель заметил, что принцип действия программы в действительности очень прост. Первое, что пытается сделать «Элиза», получив новое утверждение, это поинтересоваться его причинами, затем причинами причин и так далее. Когда программа заходит в тупик, она пытается отвечать уклончивыми фразами вида «Ты несколько склонен к отрицанию» или «Я вижу».

Словарь

Автомат. Машина, необязательно имеющая физическое воплощение, которую можно запрограммировать так, что она будет определенным образом реагировать на поступающие входные сигналы.

Байесовская сеть. Математическая модель, основанная на вероятностных зависимостях между определенными событиями. Вероятностные зависимости описываются условной вероятностью — это понятие предложил священник Томас Байес в XVIII веке. Байесовские сети основаны на следующей идее: одним цепочкам событий с определенной вероятностью сопутствуют другие цепочки событий. Байесовские сети потому и называют сетями, что они представляют собой сплетенные друг с другом цепочки вероятностных зависимостей.

Булева логика. Математическая логика, основанная на булевой алгебре, в которой переменные могут принимать только два значения — «истина» и «ложь». На булевой логике основана вся современная цифровая электроника, за исключением последних разработок, связанных с квантовыми вычислениями.

Генетический алгоритм. Частный случай эволюционного алгоритма. В общем случае при использовании генетических алгоритмов решения рассматриваемой задачи представляются в виде последовательности битов. Последовательности (гены), описывающие лучшие решения (особи), скрещиваются между собой и мутируют, максимально точно имитируя процесс биологической эволюции. Генетические алгоритмы вошли в число первых эволюционных алгоритмов, которые способствовали росту популярности искусственного интеллекта.

Дерево принятия решений. Понятие, используемое в информатике для классификации статистических выборок. В основе классификации лежит анализ наиболее важных, или дискриминантных компонент, позволяющих однозначно отнести выборку к тому или иному классу. Деревья принятия решений очень просты и вместе с тем крайне эффективны для распознавания образов.

Интеллектуальный анализ данных. Раздел анализа данных, описывающий извлечение новых знаний и вывод неочевидных правил по итогам изучения больших объемов данных. При интеллектуальном анализе данных возможно установление отношений между данными, объем которых слишком велик, чтобы человек мог обработать их и сформулировать какую-либо гипотезу.

Кластеризация. Разбиение статистических выборок на группы согласно различным критериям. Цель методов кластеризации — интеллектуальное определение критериев разбиения выборки на подгруппы. Кластеризация используется множеством способов во всех научных дисциплинах.

Клеточный автомат. Частный случай программируемого автомата и простейший пример искусственной жизни. Клеточный автомат получает входные сигналы из смежных областей и в зависимости от окружающей среды действует тем или иным образом.

Латентная переменная. Статистическая переменная, описывающая несколько условий в выборке одновременно. Некоторые примеры часто применяемых латентных переменных — «богатство» общества или благосостояние населения. Эти переменные повышают плотность информации, так как сводят несколько простых переменных воедино. Существуют автоматические методы создания латентных переменных, в частности метод главных компонент, который позволяет не только создавать подобные переменные, но и выбирать те, для которых вариация данных будет наибольшей.

Машина Тьюринга. Частный случай программируемого автомата, который принимает входные значения, записанные на бесконечной ленте, и содержит устройство чтения-записи, способное перемещаться вдоль этой ленты. Предполагается, что машина Тьюринга — универсальная вычислительная машина, хотя это до сих пор не доказано математически. Машина Тьюринга — математическая абстракция, которая широко используется в теории коммуникаций: если в данном языке программирования возможна реализация машины Тьюринга, то с его помощью можно реализовать любой алгоритм.

Метод главных компонент. Этот метод, также обозначаемый англоязычной аббревиатурой РСА, — популярный метод статистики, используемый для определения компонент, или переменных, при которых вариация изучаемых данных является наибольшей.

Метод опорных векторов. Мощный и популярный математический метод, разработанный ученым Владимиром Вапником в начале XXI века. Метод опорных векторов позволяет классифицировать статистические выборки путем ввода новых «искусственных» измерений на множестве данных рассматриваемой задачи. Название метода связано с тем, что для классификации статистических данных определяются векторы — опоры гиперплоскости, которые лучше всего разделяют между собой выборки разных классов.

Нейронная сеть. Математическая модель, представляющая собой сеть искусственных нейронов, которые можно обучить для решения задач классификации. Нейронные сети имитируют поведение нервной системы живых существ, также состоящей из обученных нейронов.