Рисунок 3.2. Алгоритм сортировки камней по Кесслеру и Вернеру. © Science magazine and Mark A. Kessler
В абиотическом мире множество аналогичных циклов происходит одновременно, но не синхронно, цикл за циклом внутри цикла, с разной периодичностью, «осваивая» пространство химических возможностей. Мы имеем дело с огромным разнообразием параллельных процессов, это немножко смахивает на массовые процессы производства в промышленной индустрии, когда множество различных частей и деталей изготавливается в разных местах и в разном темпе, а потом их соединяют в процессе сборки конечного продукта. Однако абиотические массовые процессы не имеют ни планов, ни мотивов.
В абиотическом мире нет дифференциального воспроизводства, однако мы можем в нем наблюдать большое разнообразие в области дифференциальной устойчивости: некоторые временные комбинации отдельных частей существуют дольше, чем другие, получая больше времени для корректировки или дополнения. Богатый может стать еще богаче, даже если не может передать свои богатства наследникам. Дифференциальная устойчивость должна каким-нибудь образом постепенно превратиться в дифференциальное воспроизводство. Протодарвиновские алгоритмы дифференциального «выживания» химических соединений вполне могли породить циклы автокаталитических реакций, которые, в свою очередь, могли дать начало дифференциальной репликации как частному случаю дифференциальной устойчивости, удивительной ситуации, которая создает взрывную возможность появления соединений, умножающих свои преимущества путем… размножения! Так возникают группы почти дубликатов тех «устойчивых», которые могут «осваивать» куда как большее количество разных уголков планеты, чем один или два «обычных устойчивых».
«Бриллиант – это навсегда», гласит рекламный слоган, но это всего лишь преувеличение. Бриллиант и правда поразительно устойчив, гораздо более устойчив к воздействиям, чем его конкуренты, однако его устойчивость все-таки зависит от времени. Бриллиант во вторник выглядит точно так же, как бриллиант в понедельник, и так далее. Он не размножается. Тем не менее он может потихоньку накапливать изменения, износ и трещинки, пятна грязи, присыхающие к поверхности, и прочее, что может сделать его менее устойчивым. Как и другие прочные вещи, он проходит через многие циклы, попадая в различные события вокруг него тем или иным образом. Обычно воздействия как бы скользят мимо или стираются другими воздействиями, но иногда образуется некий защитный барьер: оправа, стена или перегородка, которые обеспечивают надежную защиту.
В мире программирования существуют два известных явления – серендипити[48] и противоположный ему клобберинг. Серендипити представляет собой случайную коллизию двух несвязанных между собой процессов, приводящую к удачному результату, а клобберинг – обратное явление, когда случайная коллизия приводит к разрушению. Программисты устанавливают специальные формы защиты от клобберинга, что позволяет сделать процессы устойчивыми и защитить вычислительные циклы от интерференции. Точно так же и для ненарушенного протекания различных химических циклов необходимы некие перегородки или мембраны (например, для цикла Кребса[49] и тысяч других реакций), и их появление тоже могло способствовать возникновению жизни. (Прекрасный образец подобного взгляда на химические циклы в живых клетках как совокупность алгоритмов дана в книге Dennis Bray, Wetware, 2009[50].) Даже простые бактериальные клетки обладают чем-то вроде нервной системы, состоящей из химических связей исключительной эффективности и элегантности. Однако как же все-таки могла бы эта комбинация из мембран и циклов реакций возникнуть в пребиотическом мире? «Не за миллион лет», – говорят некоторые. Справедливо, наверное, но что насчет сотни миллионов лет? Это должно было случиться всего один раз, чтобы разжечь огонек самовоспроизводства.
Вообразите, что мы вернулись в прошлое, в первые дни этого процесса, когда устойчивость начала постепенно превращаться в размножение, и мы видим распространение некоторых штук, там, где раньше их не было, и мы спрашиваем: «Почему мы видим эти невероятные вещи здесь?» Вопрос получается двусмысленный! В ответ у нас есть и рассказ, как это получилось, и объяснение зачем. Мы имеем дело с ситуацией, когда уже существуют некоторые химические структуры, которым просто нет альтернатив, некоторые соединения оказываются устойчивее и сохраняются лучше в существовавших тогда условиях, чем другие, похожие. До возникновения полноценного воспроизводства должны были появиться весьма устойчивые соединения, структуры, стабильные столь долгое время, чтобы его хватило для сохранения изменений. Это было не очень впечатляющее достижение, но именно то, что легло в основу дарвиновского процесса: нечто, что вроде как уже что-то может, но пока ничего такого особенного. В нашей реконструкции мы становимся свидетелями «автоматического» (алгоритмического) вытеснения нефункционального функциональным. А к тому времени, когда мы доберемся до бактерии, функциональность станет прямо-таки виртуозной. Другими словами, причины, почему части собраны и упорядочены именно таким образом, существуют. Мы можем подвергнуть процессу обратной реконструкции любую самовоспроизводящуюся сущность, определив ее сильные и слабые стороны и разъяснив, почему это именно так. Это и есть зарождение причин, и мне доставляет удовольствие отметить, что это пример того, что Гленн Адельсон[51] называл «дарвинизмом о дарвинизме» (Godfrey-Smith, 2009): мы наблюдаем, как виды более сложных причин постепенно формируются путем отбора из более простых причин, «зачем» из «как», без каких-либо видимых скачков. Точно так же, как не существует Первого Млекопитающего – то есть млекопитающего, чьей мамой было бы не млекопитающее – нет и Первопричины, некоего свойства биосферы, которое могло бы встать у истоков чьего-либо «существования», сделав это успешнее, чем «конкуренция».
48
Серендипити – термин, происходящий из английского языка и обозначающий способность делать неожиданные ненамеренные открытия, анализируя случайные явления. Термин восходит к притче «Три принца из Серендипа», входившей в состав древнеперсидского эпоса и рассказывающей о чудесах интуиции.
49
Цикл Креббса – циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО-) окисляются до диоксида углерода (CO2), один из важнейших процессов дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме.
51
Гленн Адельсон (Glenn Adelson) – американский ученый, специалист по биоразнообразию, руководитель образовательных программ в области биологии и биоразнообразия.