Когда нервная клетка возбуждена, в ней увеличивается содержание аммиака. При генерализованных возбуждениях аммиак накапливается сильнее. Аммиак токсичен — он отравляет нейроны. Чтобы этого не произошло, нужны ферментные системы, способные его устранять. Они есть в клетках глии.
От нейрона к нейрону возбуждение передается через нейромедиаторы ацетилхолин и ряд других веществ, в том числе, как было установлено в последние годы, через циклические нуклеотиды. Ферменты, способствующие их синтезу, в основном локализуются в нейронах. Те ферменты, что их расщепляют, преимущественно находятся в глиальных клетках.
Нейрон синтезирует медиаторы и держит их наготове. При возбуждении он выделяет их в синаптическую щель и передает возбуждение на соседние нейроны. Чем сильнее возбуждение, тем больше выделяется нейромедиатора. Для точной передачи информации необходима кратковременность действия. Поэтому, чтобы медиатор не действовал слишком долго, нужны ферменты, которые его расщепляют. В противном случае произойдет перевозбуждение или даже отравление нервной системы.
Чтобы этого не произошло, должны работать ферменты, синтезируемые в клетках глии. Известны два фермента, способные расщеплять ацетилхолин, ацетилхолинэстераза и бутирилхолинэстераза. Первый синтезируется в нейронах, второй — в глии. Первый активнее, но справляется с расщеплением ацетилхолина лишь тогда, когда последнего накопилось еще немного. Если же ацетилхолина много, происходит «торможение избытком субстрата», и фермент перестает действовать. Тогда ацетилхолин начинает грозить центральной нервной системе разлитым диффузным перевозбуждением. В этих условиях спасает глия, используя второй фермент — бутирилхолинэстеразу, причем, чем больше ацетилхолина накапливается, тем активнее действует глия. Ее фермент не боится избытка ацетилхолина и расщепляет его.
В последние годы было установлено, что некоторые аминокислоты могут претендовать на роль медиаторов. Как уже говорилось, глиальные клетки захватывают их много, и, возможно, не только для снабжения ими нейронов, но и для предотвращения перевозбуждения нейронов, если в этом наступит необходимость.
Чем активнее работает нейрон, тем интенсивнее идут в нем окислительные процессы — поглощение кислорода и поглощение углекислого газа. Углекислый газ может превращаться в угольную кислоту, и это создаст избыток кислот в нервной ткани. Усиленное окисление глюкозы приводит к накоплению молочной, уксусной, пировиноградной и других органических кислот. Таким образом, активация нейрона создает угрозу сдвига кислотно-щелочного равновесия среды (рН), а постоянство этого равновесия — еще более строгое условие для гомеостаза. Вся жизнедеятельность организма определяется активностью ферментов, а они очень чувствительны к температуре и кислотности среды. Поэтому изменение рН в кислую сторону — это угроза гомеостазу. Для ликвидации избытка угольной кислоты существует фермент — угольная ангидраза, с помощью которой угольная кислота превращается в нейтральные соединения. Они вначале выводятся из клеток мозга в кровь, затем — в легкие и в виде углекислого газа выдыхаются в атмосферу. Активность угольной ангидразы в клетках глии в несколько раз выше, чем в нейронах. Нейрон вынужден потреблять угольную кислоту, а глия заботится 6 том, чтобы его гомеостаз не нарушался.
В последнее время стала вырисовываться и третья, регуляторная (модулирующая) роль глии. Исследования обогащенных фракций глии показали, что ее клетки не только накапливают аминокислоты, но и выделяют их в окружающую среду. Этот процесс очень чувствителен к химическому составу окружающей среды, в частности к ионному составу и к наличию или количеству других аминокислот. Учитывая тесный контакт глиальных клеток и синапсов, можно думать, что прежде всего глия влияет на передачу возбуждения через синапсы.
На крысах проводились опыты по запоминанию новых условий эксперимента. Сначала их научили нажимать левой лапой на педаль, чтобы получить пищу; затем животных переучивали: заставляли вопреки привычке пользоваться правой лапой вместо левой. При этом активация синтеза белков шла одновременно и в нейронах, и в глии, причем в глии были обнаружены белки, которых нет в нейронах.
Так в нейрохимии появилась еще одна, новая глава под названием «мозгоспецифические белки» — о белках, характерных исключительно для клеток нервной системы.
Как известно, набор белков, присущий данному организму, во всех органах однотипен. Однако в нервной системе удалось найти наряду с белками обычными для других органов несколько таких, которых нет ни в одном другом органе, например белок, условно обозначенный S-100, который преимущественно содержится в глии. Именно он накапливался в глии при переучивании крыс. Общее количество белка в головном мозгу крыс — около 200 мг, а на долю белка S-100 приходится не более 0,4 мг. Однако если в боковые желудочки мозга крысы вводили антисыворотки против белка S-100, то это заметно уменьшало способность животных к переучиванию.
В синапсах обнаружили белок, напоминающий сократительный белок мышц. Такой белок имеется во всех тканях, где наблюдаются механические перемещения и пространственные изменения формы. Когда он сокращается или расслабляется, меняется форма и конфигурация синаптических мембран и, следовательно, меняется проведение импульса.
Состояние сократительного белка (сокращение или расслабление) зависит от ионов кальция. Белок S-100 способен активно их захватывать. Накапливаясь в ходе обучения, он начинает все больше и больше отнимать ионы кальция от. сократительного белка. Таким образом регулируется состояние тех каналов, по которым выходит калий и входит натрий. Следовательно, белок S-100, преимущественно содержащийся в глиальных клетках, может оказывать влияние на синапсы, — такова гипотеза. В ближайшие годы основные исследования глии будут посвящены именно этой, третьей ее функции.
Как видим, изучение первого из недавно открытых специфических для мозга белков стимулировало исследования механизма обучения и поведения животных, а третья функция глии поднимает эту «второстепенную субстанцию» до уровня нейронов.
Н. Н. Демин, доктор биологических наук, профессор
Химизм сна
Прошло уже более 20 лет со времени открытий, заставивших пересмотреть все прежние представления о нашем сне. Было установлено, что сон — это не торможение, а весьма активный процесс, связанный с возбуждением определенных структур мозга. В особенности «быстрый», или, как часто его называют, парадоксальный, сон с быстрыми движениями глаз и электрической активностью мозга, не отличающейся от активности в бодрствовании. После того как эти открытия были сделаны, началось бурное изучение развития механизмов сна. Сейчас исследование этой проблемы разделилось на два основных направления: изучение биохимических механизмов развития сна и выявление тех изменений в нервной системе, которые вынуждают нас спать. В первом направлении уже сделано много глубоких и очень интересных работ. Прежде всего — это результаты блестящих исследований французского ученого Мишеля Жувэ.
Смена различных фаз сна (а также переход от бодрствования ко сну) сопровождается сменой активности нервных клеток — нейронов — в стволе мозга. Передача нервных импульсов осуществляется через синапсы — места соединений между клетками и их отростками — с помощью химических передатчиков — медиаторов. В зависимости от того, какой медиатор выделяется в синаптическую щель, называют данные структуры холинергическими (медиатор — ацетилхолин), серотонинергическими (медиатор — серотонин) и т. д.
Тела нейронов, в которых есть серотонин, находятся в ядрах шва каудального («кауда» — хвост по-латыни) отдела мозгового ствола, и от них идут восходящие (к переднему отделу, коре) и нисходящие (в спинной мозг) длинные отростки нервных клеток — аксоны.