Выбрать главу

Для связи с инопланетянами могут использоваться как связные системы, построенные на одном лазере, так и построенные на целой системе (батарее) лазеров. Если использовать непрерывно излучающий лазер мощностью 10 киловатт и дополнительное большое зеркало диаметром 5 метров, то можно сузить угол раствора пучка до 0,02 с дуги.

Можно использовать не одно большое зеркало, а определенное количество зеркал с малым диаметром (скажем, 10 сантиметров). Тогда система должна содержать столько же лазеров, сколько имеется зеркал. Вся она должна быть очень жестко ориентирована. Если взять 25 лазеров, то можно достичь угла раствора пучка, равного одной дуговой секунде.

Преимущество лазерных систем (батарей) для космической связи состоит в том, что при ее работе можно исключить влияние земной атмосферы. Если же работать с одним лазером, то из-за неспокойствия атмосферы угол раствора пучка становится значительно больше, чем при отсутствии такого влияния. Это влияние можно обойти, если лазерную систему поместить так, чтобы лазерный луч не проходил через атмосферу, то есть расположить ее на искусственном спутнике-платформе. Применять батарею лазерных установок в этом случае необходимости нет.

Впервые возможность связи с внеземными цивилизациями с помощью лазерного луча была научно проанализирована в 1961 году лауреатом Нобелевской премии Ч.Х. Таун-сом и Р.И. Шварцем. С тех пор лазерная техника в мире усовершенствовалась и условия для осуществления лазерной связи стали более благоприятными. Главное, что должна обеспечить эта техника, это достаточная мощность излучения и возможность отделить лазерное излучение, посланное нам инопланетянами, от излучения звезд. Как отделить свет лазера от света звезды? Этот вопрос отнюдь не простой, и решать его можно только благодаря особому свойству лазерного излучения — его высокой монохроматичности. Звезда (например, Солнце) излучает свет с различными длинами волн. Лазер же излучает только на строго определенной длине волны, скажем 0,5 мкм. На этой длине волны Солнце излучает наибольшую энергию. Тем не менее излучение лазера в 25 раз больше, чем у Солнца или у другой такой же звезды. Конечно, это относится только к данной конкретной длине волны. На других длинах волн (например, в ультрафиолетовой и инфракрасной областях спектра) это отношение было бы еще больше, поскольку на этих длинах волн Солнце излучает меньше, чем около зеленого света (0,5 мкм).

Таким образом, даже современная лазерная техника позволяет создать излучение, интенсивность которого на данной длине волны достаточна для того, чтобы его выделить из всего излучения звезд. Чтобы добиться еще лучшего выделения лазерного излучения, надо «работать» вблизи линий поглощения Солнца (или другой звезды), то есть в том диапазоне, где часть излучения Солнца поглощается и оно меньше мешает выделению лазерного излучения. Если лазер работает на длине волны 0,15 мкм, то его спектральная интенсивность может в десятки тысяч раз превосходить интенсивность солнечного излучения на этой длине волны, поскольку она находится в области поглощения солнечного излучения. Конечно, такая лазерная установка должна быть расположена за пределами земной атмосферы, иначе лазерное излучение будет поглощено атмосферным газом. Таким образом, регистрируя и анализируя свет от удаленных звезд, мы должны иметь в виду, что лазерное излучение, посланное внеземными цивилизациями, может быть обнаружено на фоне этого излучения. Оно проявится как узкая линия. Но для этого необходимо анализировать излучение звезд с помощью высококачественных спектрографов. Можно использовать также очень узкополосные фильтры. Конечно, указанные оптические устройства должны быть очень высококачественными: разрешающая способность спектрографа должна быть 0,03 А, для того чтобы получить 10 %-ную контрастность линии лазера над фоном. Современная оптическая техника позволяет это сделать. Поэтому уже сейчас мы можем на самых сильных телескопах начать вылавливание линий излучения, принадлежащих лазерным устройствам внеземных цивилизаций.

Мы неоднократно обсуждали различные аспекты действия эффекта Доплера на излучение движущегося источника. В данном случае этот эффект также необходимо учитывать, так как за счет движения приемников излучения в направлении самого излучения должно происходить смещение (доплеровский сдвиг) частоты излучения в ту или иную сторону. Чтобы регистрировать это излучение со смещенной частотой, надо располагать спектрографами с соответствующей разрешающей способностью.

Таким образом, даже современный уровень лазерной техники позволяет принимать лазерные сигналы от ближайших звезд и посылать их обратно. Но остается еще один, возможно самый главный, вопрос: куда посылать сигналы и откуда их принимать? В том и другом случае мы должны куда-то направлять наши телескопы, причем с очень большой точностью. То же самое требуется и от наших корреспондентов в космосе. Если они находятся на ближайших звездах (их планетах), то земную орбиту они будут наблюдать под углом в одну угловую секунду. Для того чтобы их лазерный луч попал на Землю, они должны направить его с угловым разрешением 0,02 секунды дуги. Нашим астрономам сейчас такая точность доступна. Поэтому мы полагаем, что она достижима и для внеземных цивилизаций, ищущих связи с нами.

Логично представить себе, что инопланетяне в поисках связи с нами будут «шарить» лазерным лучом в пределах Солнечной системы. Если они сделают ширину лазерного луча (пучка) больше, то при этом он будет все время освещать Землю и может относительно легко регистрироваться. Но чем шире луч, тем больше необходимо излучать энергии, чтобы ее хватило на всю освещаемую им поверхность, для того чтобы она могла быть зарегистрирована. Но можно думать, что эта трудность для инопланетян не будет неразрешимой. По крайней мере, в земных лабораториях увеличение мощности лазерного излучения происходит очень быстро.

Особенно эффективно лазерная связь может использоваться в пределах Солнечной системы. С помощью лазерного луча можно создать пятно на Марсе диаметром 5–7 километров, которое будет светиться примерно в 10 раз ярче, чем Венера при наблюдении с Земли. Лазерный луч может нести на себе любую информацию: его интенсивность можно изменять во времени по любому закону (другими словами, лазерное излучение можно модулировать соответствующим образом). Поверхность Луны была освещена лазерным лучом. На не освещенной Солнцем стороне Луны получается светящееся пятно диаметром 40 метров. Оно освещено в 100 раз меньше, чем в случае прямого падения солнечных лучей.

МЕЖЗВЕЗДНЫЕ ПЕРЕЛЕТЫ

Меньше всего в наше время специалисты обсуждают межзвездные путешествия на космических кораблях. И дело тут не в том, что эта тема набила оскомину, поскольку обсуждалась в деталях в течение столетий (правда, эти детали были из области фантастики). Дело также не в том, что отпала необходимость в межзвездных полетах и мы будем общаться с внеземными цивилизациями только с помощью различных сигналов. Никакими сигналами путешествие в другие миры не заменить. «Лучше один раз увидеть, чем сто раз услышать». Сигналы не дадут нам ни вещественных, осязаемых предметов, ни реальных представителей фауны и флоры. С помощью сигналов мы не сможем установить контакт с цивилизациями, которые к нему технологически еще не готовы. Можно указать и на другие стороны вселенской жизни, которые останутся за бортом, если мы не можем освоить космический транспорт. Так почему же эта проблема сейчас не рассматривается специалистами в практической плоскости? Ответ на этот вопрос очень прост: мы пока не готовы к таким полетам. Это «пока» может длиться еще сотни лет, хотя очень легко ошибиться, предсказывая развитие науки и техники на будущее.

Несмотря на столь неблагоприятное состояние дел с межзвездными перелетами, имеет смысл ознакомиться с самой проблемой. Если мы не хотим находиться в пути миллионы лет (а это абсурдно), то надо обеспечить большую скорость корабля. Скорость, превышающая скорость света, невозможна, скорость света для корабля также нереальна. Поэтому при разных оценках оперируют скоростью, составляющей 10 % от скорости света. Ее называют децисветовой. Сантисветовая скорость в сто раз меньше скорости света.