Выбрать главу

При таком способе игры спрашивающий имеет возможность играть без проигрыша. Что для этого делать?

Решение

Спрашивающий должен брать всегда нечетное число спичек. Этим он обеспечивает своему партнеру проигрыш во всяком случае — положит ли тот 2 или 1 спичку.

Действительно:

нечетное число + 1 = четному числу

нечетное число + 2 = нечетному числу,

т.-е. в обоих случаях получается противоположное тому, что было указано партнером.

В какой руке?

Задача 23-я

Вы просите товарища взять в одну руку нечетное число спичек, в другую — четное и утверждаете, что сможете безошибочно отгадать, в какой руке у него нечетное число спичек — в правой или в левой. Для этого вы просите его умножить то число спичек, которое зажато в правой руке, на 10, а то, что в левой, — на 5, оба результата сложить и сказать вам сумму.

По этой сумме вы тотчас же говорите ему, в правой или в левой руке находится нечетное число спичек.

Как вы это можете сделать?

Решение

Отгадывание основано на том, что, когда хотя бы один из двух множителей — число четное, то произведение всегда получается четное, например:

8 x 6 = 48; 8 х 7 = 56;

когда же оба множителя нечетных, то произведение — нечетное:

7 x 7 = 49.

Поэтому, если нечетное число спичек в правой руке (т.-е. умножается на 10), а четное в левой (умножается на 5), то в обоих случаях получатся четные произведения, и сумма их, конечно, будет четная. Если же в правой руке четное число (умножается на 10), а в левой — нечетное (умножается на 5), то придется сложить четное произведение с нечетным, и сумма получится нечетная.

Итак, когда товарищ ваш назвал вам четную сумму, вы говорите, что четное число спичек у него в левой руке; при нечетной же сумме наоборот.

Игра в двадцать

Задача 24-я

В этой игре участвуют двое. На стол кладется кучка из 20 спичек, и играющие, один после другого, берут из этой кучки не более трех спичек каждый.

Проигрывает тот, кто берет последнюю взятку, и, значит, выигрывает тот, кто оставляет противнику всего одну спичку.

Как должны вы начать игру и вести ее дальше, чтобы наверняка выиграть?

Решение

Желая выиграть, вы должны начать с того, что берете 3 спички. Из оставшихся 17 противник ваш может взять 1, 2 или 3 спички, по своему желанию, оставив в кучке 16, 15 или 14 спичек. Сколько бы он ни «взял, вы следующим ходом (беря 3, 2 или 1 спичку) оставляете ему 13 спичек. Дальнейшими ходами вы должны оставить в кучке последовательно 9, 5 и, наконец, 1 спичку, т.-е. выигрываете.

Говоря короче: вы берете в начале игры 3 спички, а в дальнейшем каждый раз столько, чтобы ваша взятка вместе с предыдущей взяткой партнера составляла 4 спички.

Этот план игры найден следующим рассуждением. Вы всегда сможете оставить противнику 1 спичку, если предыдущим ходом оставили ему 5 (тогда, сколько бы он ни взял — 3, 2, 1 — останется 2, 3, 4, т.-е. благоприятное для вас число спичек). Но, чтобы иметь возможность оставить 5, вы должны предыдущим ходом оставить 9, и т. д. Так, "пятясь назад", легко рассчитать все ходы.

Игра в тридцать два

Задача 25-я

Вот видоизменение предыдущей игры. Берется кучка из 32 спичек. Каждый игрок по-очереди извлекает из нее не более 4-х спичек. Кто возьмет последнюю спичку, гот считается выигравшим.

Как следует играть, чтобы непременно выиграть?

Как следует играть в том случае, если взявший последнюю спичку считается проигравшим?

Решение

Ведя расчет с конца, вы без труда раскроете секрет беспроигрышной игры. Он состоит в том, чтобы, начиная игру, взять 2 спички; при следующих же ваших ходах вы оставляете в кучке 25, 20, 15, 10, наконец 5 спичек; тогда последняя спичка будет непременно ваша. Другими словами: берите каждый раз столько спичек, чтобы ваша взятка вместе с предыдущей взяткой партнера составляла 5 спичек.

Указанное правило годится и в том случае, если взявший последнюю спичку считается проигравшим, но только при первом ходе вы должны взять тогда не 2, а 1 спичку.

Немного алгебры.

Игры подобного рода могут быть крайне разнообразны, в зависимости от начального числа спичек в кучке и от предельной величины взятки. Однако, знакомые с начатками алгебры, могут без труда найти способ выигрывать при всяких условиях игры. Сделаем же эту маленькую экскурсию в область алгебры.

Читатели, которые чувствуют себя неподготовленными сопровождать нас, могут прямо перейти к следующей статейке.

Итак, пусть число спичек в куче а, а наибольшая взятка, какая разрешается условиями игры — n. Выигрывает тот, кто берет последнюю спичку. Составим частное:

a/(n+1)

Если оно не дает остатка, то надо предоставить начинать игру своему партнеру и брать каждый раз столько, чтобы общее число спичек, взятых обоими от начала игры, последовательно равнялось

n + 1; 2(n+1); 3(n+1); 4(n+1) и т. д.

Если же при делении — a/(n+1) получается остаток, который обозначим через r, то вы должны начать игру сами и в первый раз взять r спичек, а в дальнейшем держаться чисел:

r + (n + 1); r + 2(n + 1)r + 3(n + 1) и т. д.

Ради упражнения попробуйте применить указанные правила к следующим частным случаям (выигравшим считается взявший последнюю спичку):

1) число спичек в кучке 15; взятка — не свыше 3;

2) число спичек 25; взятка не свыше 4;

3) число спичек 30; взятка не свыше 6;

4) то же, но взятка — не свыше 7.

Разумеется, когда секрет беспроигрышной игры известен обоим партнерам, то выигрыш предрешен, и игра утрачивает смысл.

Игра в двадцать семь

Задача 26-я

В этой игре также начинают с составления кучки (из 27 спичек) и назначают наибольший размер взятки 4 спички. Но конец игры непохож на конец предыдущих игр: здесь считается выигравшим тот, у кого по окончании игры окажется четное число спичек.

И в этом случае существует секрет беспроигрышной игры. Какой?

Решение

Начав рассчитывать с конца, вы найдете следующий способ беспроигрышной игры: если у вас уже имеется нечетное число спичек, то при дальнейших взятках вы должны оставлять противнику всякий раз такое число спичек, которое на 1 меньше кратного[4] 6 — т.-е. 5 спичек, 11, 17, 23. Если же у вас взято четное число спичек, то вы берете взятки с таким расчетом, чтобы на столе оставалось число кратное 6-ти или на 1 больше, т. — е 6 или 7, 12 или 13, 18 или 19, 24 или 25.

Владея этим секретом, вы можете выиграть, даже если и не вы начали игру. Когда же начинать приходится вам, то считайте, что у вас взято 0 спичек: нуль принимайте за число четное (ведь за ним следует нечетное число — один) и поступайте согласно указанным правилам.

вернуться

4

Число называется "кратным" другого числа, если делится на него без остатка. Напр., число 18 кратно 6, число 35 кратно 7, число 100 кратно 25.

полную версию книги