Статический приоритет каждого обработчика можно оределить в атрибуте task, используя аргумент priority. Задачи могут иметь приоритет в диапазоне 1..=(1 << NVIC_PRIO_BITS), где NVIC_PRIO_BITS - это константа, определенная в крейте устройства. Когда аргумент priority не указан, предполагается, что приоритет равен 1. Задача idle имеет ненастраиваемый приоритет 0, наименьший из возможных.
Более высокое значение означает более высокий приоритет в RTIC, что противоположно тому, что указано в периферии NVIC Cortex-M. Точнее, это значит, что число 10 обозначает приоритет выше, чем число 9.
Когда несколько задач готовы к запуску, задача с самым большим статическим приоритетом будет запущена первой. Приоритезацию задач можно рассматривать по такому сценарию: сигнал прерывания приходит во время выполнения задачи с низким приоритетом; сигнал переключает задачу с высоким приоритетом в режим ожидания. Разница в приоритетах приводи к тому, что задача с высоким приоритетом вытесняет задачу с низким: выполнение задачи с низким приоритетом замораживается и задача с высоким приоритетом выполняется, пока не будет завершена. Как только задача с высоким приоритетом будет остановлена, продолжится выполнение задачи с низким приоритетом.
Следующий пример демонстрирует диспетчеризацию на основе приоритетов задач.
#![allow(unused)]
fn main() {
//! examples/preempt.rs
#![no_main]
#![no_std]
use panic_semihosting as _;
use rtic::app;
#[app(device = lm3s6965)]
mod app {
use cortex_m_semihosting::{debug, hprintln};
use lm3s6965::Interrupt;
#[shared]
struct Shared {}
#[local]
struct Local {}
#[init]
fn init(_: init::Context) -> (Shared, Local, init::Monotonics) {
rtic::pend(Interrupt::GPIOA);
(Shared {}, Local {}, init::Monotonics())
}
#[task(binds = GPIOA, priority = 1)]
fn gpioa(_: gpioa::Context) {
hprintln!("GPIOA - start").unwrap();
rtic::pend(Interrupt::GPIOC);
hprintln!("GPIOA - end").unwrap();
debug::exit(debug::EXIT_SUCCESS);
}
#[task(binds = GPIOB, priority = 2)]
fn gpiob(_: gpiob::Context) {
hprintln!(" GPIOB").unwrap();
}
#[task(binds = GPIOC, priority = 2)]
fn gpioc(_: gpioc::Context) {
hprintln!(" GPIOC - start").unwrap();
rtic::pend(Interrupt::GPIOB);
hprintln!(" GPIOC - end").unwrap();
}
}
}
$ cargo run --example preempt
GPIOA - start
GPIOC - start
GPIOC - end
GPIOB
GPIOA - end
Заметьте, что задача gpiob не вытесняет задачу gpioc, потому что ее приоритет такой же, как и у gpioc. Однако, как только gpioc возвращает результат, выполненяется задача gpiob, как более приоритетная по сравнению с gpioa. Выполнение gpioa возобновляется только после выхода из gpiob.
Еще одно замечание по поводу приоритетов: выбор приоритета большего, чем поддерживает устройство (а именно 1 << NVIC_PRIO_BITS) приведет к ошибке компиляции. Из-за ограничений языка, сообщение об ошибке далеко от понимания: вам скажут что-то похожее на "evaluation of constant value failed", а указатель на ошибку не покажет на проблемное значение прерывания -- мы извиняемся за это!
Фреймворк предоставляет абстракцию для разделения данных между любыми контекстами, с которыми мы встречались в предыдущей главе (задачами-обработчиками, init и idle): ресурсы.
Ресурсы - это данные, видимые только функциями, определенными внутри модуля #[app]. Фреймворк дает пользователю полный контроль за тем, какой контекст может получить доступ к какому ресурсу.
Все ресурсы определены в одной структуре внутри модуля #[app]. Каждое поле структуры соответствует отдельному ресурсу. struct-ура должна быть аннотирована следующим атрибутом: #[resources].
Ресурсам могут быть опционально даны начальные значения с помощью атрибута #[init]. Ресурсы, которым не передано начально значение, называются поздними ресурсами, более детально они описаны в одном из разделов на этой странице.
Каждый контекс (задача-обработчик, init или idle) должен указать ресурсы, к которым он намерен обращаться, в соответсятвующем ему атрибуте с метаданными, используя аргумент resources. Этот аргумент принимает список имен ресурсов в качестве значения. Перечисленные ресурсы становятся доступны в контексте через поле resources структуры Context.
Пример программы, показанной ниже содержит два обработчика прерывания, которые разделяют доступ к ресурсу под названием shared.