Для реле РТ-40, РТ-80, РТ-90 kЗ = 1,1–1,2, kВ = 0,8–0,85 [4].
Если максимальное значение тока самозапуска неизвестно, его можно определить приближенно на основании коэффициента самозапуска, показывающего, во сколько раз ток самозапуска больше максимального рабочего тока. Тогда:
Здесь IСЗ и kСЗП — соответственно ток самозапуска электродвигателей в месте установки защиты и коэффициент самозапуска.
Выдержки времени срабатывания МТЗ при каскадном соединении линий должны возрастать по мере приближения к источнику питания (см. рис. 2.7):
где tСЗ H4 — время срабатывания собственной защиты нагрузки;
Δ t — ступень селективности; при использовании электромеханических реле времени Δ t = 0,4–0,6 с.
2.3.2. Схемы МТЗ
Полная звезда (трехфазная трехрелейная схема, рис. 2.9; kCX = 1) применяется редко, так как в сетях 6-35 кВ при двойных замыканиях на землю она может приводить к неселективному отключению поврежденных линий. Чувствительность такой защиты, установленной на трансформаторах 110 кВ и выше, необходимо искусственно снижать, не допуская действия защиты при внешних однофазных КЗ. В сетях 110 кВ и выше обычно используют дистанционную защиту [5].
Неполная звезда (двухфазная двухрелейная или трехрелейная схема, рис. 2.10) используется для защиты в электрических сетях 6-35 кВ, то есть в сетях с изолированной или компенсированной нейтралью, где не может быть однофазных КЗ. Для уменьшения вероятности неселективных отключений при двойных замыканиях на землю ТТ во всей сети устанавливают на одноименных фазах (обычно А и С). На трансформаторах со схемами соединения обмоток «звезда/треугольник» (Y/Δ) и «треугольник/звезда» (Δ/Y), а также на линиях, питающих такие трансформаторы, следует использовать трехрелейную схему [5]: при двухфазном КЗ на стороне низшего напряжения (НН) трансформатора ток КЗ в одной из фаз на стороне высшего напряжения (ВН) будет в два раза выше, чем в двух других. В одном из трех случаев двухфазных КЗ этой фазой будет являться фаза B, не охваченная защитой, и чувствительность защиты снизится в два раза. Для повышения чувствительности в этом случае в обратный провод двухфазной схемы следует включить дополнительное реле KA3 (показано пунктиром на рис. 2.10).
Треугольник (обмотки реле соединяются по схеме звезды, а вторичные обмотки трансформаторов тока — по схеме треугольника, рис. 2.11; kCX = √3; схема оперативного тока такая же, как для полной звезды — см. рис. 2.9) используется для защиты трансформаторов 35 кВ и выше.
Защита, выполненная по этой схеме, не действует при внешних однофазных КЗ (в отличие от схемы полной звезды).
На двухобмоточных трансформаторах со схемой соединения обмоток «звезда/треугольник» (Y/Δ) одно из трех реле может быть исключено [5] без ухудшения чувствительности защиты (реле KA2 на рис. 2.11).
Неполный треугольник (двухфазная однорелейная схема, рис. 2.12; kCX = √3) ввиду значительных недостатков допустимо использовать только для защиты электродвигателей выше 1 кВ мощностью не более 2 МВт [3, 5]. Этот способ соединения вторичных токовых цепей иногда называют схемой включения реле «на разность токов двух фаз».
2.4. Трехступенчатые токовые защиты
Для того чтобы обеспечить надежную защиту электрических сетей при повреждениях, часто недостаточно использовать защиту одного вида. Так, токовые отсечки обеспечивают быстрое выявление повреждений, но имеют зоны нечувствительности в конце контролируемого объекта. МТЗ имеют достаточно протяженные зоны действия, но их приходится выполнять с большими выдержками времени срабатывания, особенно на головных участках сетей, где требуется высокое быстродействие. Для того чтобы максимально использовать достоинства защит разных типов, их объединяют в один комплекс.
Наибольшее распространение получили трехступенчатые токовые защиты. В качестве первой ступени используются токовые отсечки мгновенного действия (селективные токовые отсечки). В качестве второй — токовые отсечки с выдержкой времени срабатывания (неселективные токовые отсечки). В качестве третьей ступени — МТЗ.