Выбрать главу

До настоящего времени остается нерешенным вопрос о влиянии нейрогуморальных факторов на мелкие сосуды легкого в условиях гипоксии. Такие нейрогуморальные медиаторы, как катехоламины, гистамин, серотонин, ангиотензин II, тромбоксан, лейкотриены С4 и D4, эндотелин и другие факторы [9], могут повлиять на величину ответа при гипоксии, изменяя тонус сосудов. Возможно, что имеются сложные взаимоотношения между этими медиаторами или существует неизвестный фактор, который и несет ответственность за вазоконстрикцию [50].

Степень ответа на гипоксический стимул зависит от количества гладкой мускулатуры в стенках легочных артерий. Избыточное содержание гладкой мускулатуры в стенках легочных артерий (например, у людей, проживающих выше уровня моря) приводит к повышенной чувствительности стенок сосудов к гипоксии [2]. Известно, что у людей простациклин (PGI<sub>2</sub>) и окись азота снижают вазоконстрикторную реакцию в ответ на гипоксию, что может привести к гипоксемии [56].

Повышение сосудистого сопротивления, вызванное гипоксией, вероятно, связано с повышением концентрации ионов водорода в плазме клеток гладкой мускулатуры [42] и частично - с повышением давления диоксида углерода, если это приводит к изменению pH [29]. Повышение концентрации ионов водорода в клетках гладкой мускулатуры и повышение Р<sub>СО2</sub> - важный внутриклеточный сигнал, который является посредником между актином и миозином, что изменяет сосудистый тонус.

Ингибиторы циклооксигеназы (например, индометацин) повышают вазокон-стрикторный ответ на гипоксию [11], а повышение давления или увеличение объема крови в левом предсердии может предотвратить индуцированное гипоксией сужение легочных сосудов [35].

Существует Са<sup>2+</sup>гипотеза о непосредственном влиянии гипоксии на гладкую мускулатуру сосудистых стенок [1]. Установлено, что в условиях гипоксии увеличивается внутриклеточная концентрация ионов кальция Ca<sup>2+</sup> [1]. Ионы кальция, взаимодействуя с кальмодулином, активизируют миозин, что и приводит к сокращению гладкой мускулатуры и вазоконстрикции [32].

НЕРВНАЯ РЕГУЛЯЦИЯ СОСУДИСТОГО СОПРОТИВЛЕНИЯ В ЛЕГКИХ

В экспериментальных работах у млекопитающих были обнаружены адренергические и холинергические эфферентные нервы в легочных артериях и венах. Однако иннервация легочных сосудов значительно уступает иннервации сосудов большого круга кровообращения. Установлено, что больше всего нервных волокон сосредоточено в крупных сосудах, а в микрососудах их количество уменьшается [8]. Возбуждение альфаадренорецепторов вызывает вазоконстрикцию, а бетаадренорецепторов - вазодилатацию [7]. альфаАдренергические механизмы незначительно влияют на регуляцию тонуса гладкой мускулатуры сосудов легкого. Блокада альфаадренорецепторов не вызывает снижения тонуса гладкой мускулатуры и не изменяет степень ответа на гипоксию [43]. При блокаде бетаадренорецепторов усиливается вазоконстрикторный ответ на катехоламины, которые стимулируют оба типа рецепторов, а также повышается тонус гладкой мускулатуры [23].

Не совсем ясно, почему при богатой иннервации сосудистой сети в легких влияние нервной регуляции на сосудистый тонус мало. Вероятно, нервные механизмы регуляции заключаются в перераспределении сосудистого сопротивления таким образом, чтобы обеспечить адекватное регионарное и полное легочное кровообращение [10].

type: dkli00026

РЕГУЛЯЦИЯ ВОДНОГО БАЛАНСА В ЛЕГКИХ

Отек легкого - это накопление жидкости в экстраваскулярном пространстве. В случае альвеолярного отека происходит накопление жидкости в альвеолах, что приводит к нарушению газообмена в легких и гипоксемии. Нормальное легкое на 80% состоит из воды [17]. При нарушениях гомеостатических механизмов регуляции водного обмена жидкость накапливается сначала в промежуточном веществе, а затем и в альвеолах [46].

Уравнение Старлинга описывает фильтрацию жидкости через капиллярную мембрану:

path: pictures/f03.png

где Jv - транскапиллярная фильтрация (в см<sup>3</sup>/с), Lp - гидравлическая проводимость мембраны, S - площадь поверхности мембраны, P<sub>C</sub> - легочное капиллярное гидростатическое давление, P<sub>i</sub> - интерстициальное гидростатическое давление, p - коллоидное или онкотическое давление в плазме крови, p - коллоидное осмотическое (или онкотическое) давление в интерстициальной жидкости, сигмаd - осмотический коэффициент отражения сосудистой стенки (сигмаd = 0, если мембрана свободно проницаема для молекул, и сигмаd =1, если мембрана непроницаема для определенного типа молекул), LpS - капиллярный коэффициент фильтрации [27].

Градиент P<sub>C</sub><sub> </sub>направлен из капилляра в интерстиций, а градиент P<sub>i</sub> - внутрь капилляра. Направление движения и количество жидкости, проходящей через капиллярную мембрану, определяется суммой гидростатических и коллоидосмотических давлений (P<sub>C</sub>+ p составляют движущую силу для фильтрации, а p + P<sub>i</sub> - для абсорбции жидкости). При снижении P<sub>C</sub> наиболее вероятно, что фильтрация произойдет в артериальном конце капилляра, а абсорбция - в венозном конце. При расширении капилляра P<sub>C</sub> увеличивается, что усиливает фильтрацию, при сужении капилляра P<sub>C</sub><sub> </sub>уменьшается, что усиливает абсорбцию. Около 2 - 5% всей плазмы, которая находится в легком, фильтруется, а 80 - 90% абсорбируется обратно в капилляры и венулы. Оставшаяся в интерстиции жидкость поступает в лимфатическую систему [46, 49]. В норме P<sub>C</sub> приблизительно равно 10 мм рт. ст., P<sub>i</sub> - 3 мм рт.ст., p - 25 мм рт.ст., p - 19 мм рт.ст. [49].

type: dkli00027

ДИФФУЗИЯ

Диффузия - основной процесс транспорта газов и жидкости через альвеолярно-капиллярную мембрану.

Диффузия описывается уравнением:

J = DA(dc:dx),(4)

где J - поток или количество вещества, перенесенного в единицу времени; D - проницаемость мембраны для специфических молекул; А - проницаемый участок альвеолярно-капиллярной мембраны; dc:dx - градиент концентрации вещества.

Кроме того, диффузия может быть описана уравнением:

J = PS (C<sub>iv</sub> - C<sub>i</sub>),

где P - капиллярная проницаемость вещества, S - площадь капиллярной поверхности, C<sub>iv</sub> - интракапиллярная концентрация вещества, C<sub>i</sub> - концентрация вещества в промежуточной жидкости.

Диффузия растворов зависит от характеристик самого раствора. Диффузия нерастворимых белковых молекул ограничена или проходит через определенные участки капиллярной стенки, которые называются порами [44].

Эндотелий легочных капилляров имеет непрерывный характер и большую протяженность, поэтому на капиллярном уровне происходит преимущественно диффузия жидкости и растворов. Низкомолекулярные растворимые липиды и вода могут проникать через эндотелиальные ячейки (трансцеллюлярно), а также между ячейками (парацеллюлярно).

Альвеолярный эпителий, состоящий из клеток I и II типов, является барьером на пути проникновения воды и растворенных в ней веществ в альвеолы. Вода и ионы могут проникать через этот барьер очень ограниченно, тогда как низкомолекулярные вещества типа кислорода и диоксида углерода свободно проникают через альвеолярный эпителий.

Альвеолярно-капиллярная мембрана имеет толстые и тонкие части. Толстая часть альвеолярно-капиллярной мембраны имеет более выраженное промежуточное пространство, которое заполнено соединительнотканными волокнами, коллагеновыми волокнами I и IV типа, фибронектином, витронектином и протеогликанами [49]. Обмен жидкости и растворов происходит прежде всего в толстом слое альвеолярно-капиллярной мембраны, так как это более проницаемая часть мембраны. Тонкий участок мембраны является плохо проницаемым, потому что эндотелиальные и эпителиальные клетки фактически прилежат друг к другу [49].