12.Gil J: Organization of the microcirculation of the lung. // Annu Rev Physiol. 1980. 42. P.177-186,.
13.Glazier JB, Hughes JMB, Maloney JE, West JB: Measurements of capillary dimensions and blood volume in rapidly frozen lungs. // J Appl Physiol. 1969. 26. P.65-76.
14.Glazier JB, Murray JF: Sites of pulmonary vasomotor reactivity in the dog during alveolar hypoxia and serotonin and histamine infusion. // J Clin Invest. 1971. 50. P.2550-2558.
15.Gossage JR, Kanj G: Pulmonary arteriovenous malformations: A state of the art review. // Am J Respir Crit Care Med. 1998. 158. P.643-661.
16.Grover RF, Wagner WW, McMurtry IF, et aclass="underline" Pulmonary circulation. In Fishman AP, Fisher AB, Geiger SR (eds): Handbook of Physiology: The Respiratory System. Bethesda, MD: American Physiological Society. 1985. V.1. P. 93-165.
17.Gump FE: Lung fluid and solute compartments. In Staub NC (ed): Lung Water and Solute Exchange. New York: Marcel Dekker. 1978. V.7. P. 75-98.
18.Guyton AC, Lindsey AE: Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. // Circ Res. 1959. 7. P.649-657.
19.Guyton AC, Taylor AE, Drake RE, et aclass="underline" Dynamics of subatmospheric pressure in the pulmonary interstitial fluid. In Porter R, O'Connor M (eds): Lung Liquids (Ciba Foundation Symposium #38). Amsterdam: Excerpta Medica. 1976. P. 77-100.
20.Hislop A, Reid L: Pulmonary arterial development during childhood: Branching pattern and structure. // Thorax. 1973. 28. P.129-135,.
21.Hlastala MP, Glenny RW: Vascular structure determines pulmonary blood flow distribution. // News Physiol Sci. 1999. 14. P.182-186.
22.Howell JBL, Permutt S, Proctor DF, Riley RL: Effect of inflation of the lung on different parts of pulmonary vascular bed. // J Appl Physiol. 1961. 16. P.71-76.
23.Hyman AL, Kadowitz PJ: Enhancement of alpha and beta adrenoreceptor responses by elevations in vascular tone in the pulmonary circulation. //Am J Physiol Heart Circ Physiol. 1986. 250. P.1109-1116.
24.Kato M, Staub NC: Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. // Circ Res. 1966. 19. P.426-440.
25.Lai-Fook SJ, Toporoff B: Pressure-volume behavior of perivascular interstitium measured in isolated dog lung. // J Appl Physiol. 1980. 48. P.939-946.
26.Lai-Fook SJ: A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. //J Appl Physiol. 1979. 46. P.419-429.
27.Landis EM, Pappenheimer JR: Exchange of substances through the capillary walls. In Hamilton WF, Dow P (eds): Handbook of Physiology. Section 2: Circulation. Washington, DC: American Physiological Society. 1963. V.2. P. 961-1034.
28.Lauweryns JM, Baert JH: Alveolar clearance and the role of pulmonary lymphatics. // Am Rev Respir Dis. 1977. 115. P.625-683.
29.Malik AB, Kidd BSL: Independent effects of changes in H+ and CO2 concentrations on hypoxic pulmonary vasoconstriction. // Am J Physiol. 1973. 224. P.1-6.
30.Malik AB: Pulmonary microembolism. // Physiol Rev. 1983. 63. P.1114-1207.
31.Mazzone RW: Influence of vascular and transpulmonary pressures on the functional morphology of the pulmonary microcirculation.// Microvasc Res. 1980. 20. P.295-306.
32.McMurtry IF, Davidson AB, Reeves JT, et aclass="underline" Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. // Circ Res. 1976. 38. P.990-994.
33.Michel RP: Arteries and veins of the normal dog lung: Qualitative and quantitative structural differences. // Am J Anat. 1982. 164. P.227-241.
34.Murray JF, Karp RB, Nadel JA: Viscosity effects on pressure-flow relations and vascular resistance in dogs' lungs. // J Appl Physiol. 1969. 27. P.336-341.
35.Quebbeman EJ, Dawson CA: Influence of inflation and atelectasis on the hypoxic pressure response in isolated dog lung lobes. // Cardiovasc Res. 1976. 10. P.672-677,
36.Reid L: Structural and functional reappraisal of the pulmonary artery system. In Scientific Basis of Medicine Annual Reviews. London: Athlone. 1968. P. 289-307.
37.Rennard SI, Ferrans VJ, Bradley KH, et aclass="underline" Lung connective tissue. In Witschi H (ed): Mechanisms in Pulmonary Toxicology. Cleveland, Ohio: CRC Press, 1981.
38.Richardson JB: Nerve supply to the lungs. //Am Rev Respir Dis. 1979. 119. P.785-802.
39.Roos A, Thomas LJ Jr, Nagel EL, Prommas DC: Pulmonary vascular resistance as determined by lung inflation and vascular pressures. // J Appl Physiol. 1961. 16. P.77-84.
40.Rosenzweig DY, Hughes JMB, Glazier JB: Effects of transpulmonary and vascular pressures on pulmonary blood volume in isolated lung. // J Appl Physiol. 1970. 28. P.553-560.
41.Roughton FJW, Forster FE: Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. // J Appl Physiol. 1957. 11. P.290-302,
42.Rudolph AM, Yaun S: Responses of the pulmonary vasculature to hypoxia and H+ ion concentration changes. // J Clin Invest. 1966. 45. P.399-411.
43.Silove ED, Grover RF: Effects of alpha adrenergic blockade and tissue catecholamine depletion on pulmonary vascular responses to hypoxia. // J Clin Invest. 1968. 47. P.274-285.
44.Simionescu M, Simionescu N: Ultrastructure of the microvascular walclass="underline" Functional correlations. In Renkin EM, Michel CC (eds): Handbook of Physiology. Section 2: The Cardiovascular System.: Microcirculation. Bethesda, Md: American Physiological Society, 1984. V. IV. P.41-101.
45.Staub NC: Pathophysiology of pulmonary edema. In Staub NC, Taylor AE (eds): Edema. New York: Raven, 1984. P. 719-746.
46.Staub NC: Pulmonary edema. // Physiol Rev. 1974. 54. P.679-811.
47.Strieter RM, Belperio JA, Keane MP: CXC chemokines in angiogenesis related to pulmonary fibrosis. // Chest. 2002. 122. P.298-301.
48.Swan HJC, Ganz W, Forrester J, et aclass="underline" Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. // N Engl J Med. 1970. 283. P.447-451.
49.Taylor AE, Parker JC: Pulmonary interstitial spaces and lymphatics. In Fishman AP, Fisher AB (eds): Handbook of Physiology. Section 3: The Respiratory System.: Circulation and Nonrespiratory Function. Bethesda, Md: American Physiological Society, 1985. V. I. P.167-230.
50.Teng X, Li D, Champion HC, Johns RA: FIZZ1/RELMalpha, a novel hypoxia-induced mitogenic factor in lung with vasoconstrictive and angiogenic properties. // Circ Res. 2003. 92. P.1065-1067.
51.Tooker J, Huseby J, Butler J: The effect of Swan-Ganz catheter height on the wedge pressure-left atrial pressure relationships in edema during positive-pressure ventilation. // Am Rev Respir Dis. 1978. 117. P.721-725.
52.Wagenvoort CA, Wagenvoort N: Arterial anastomoses, bronchopulmonary arteries and pulmobronchial arteries in perinatal lungs. // Lab Invest. 1967. 16. P.13-14.
53.Wagner EM: Bronchial circulation. In Crystal RG, West JB, Weibel ER, Barnes PJ (eds): The Lung: Scientific Foundations (2nd ed). New York: Lippincott-Raven, 1997. P. 1093-1105.
54.Weibel ER, Gil J: Structural-functional relationship at the alveolar level. In West JB (ed): Lung Biology in Health and Disease.: Bioengineering Aspects of the Lung. New York: Marcel Dekker, 1977. V. 3. P.1-81.
55.Weibel ER: Design and structure of the human lung. In Fishman AP (ed): Pulmonary Diseases and Disorders. New York: McGraw-Hill, 1980. P. 224-271.
56.Weissmann N, Grimminger F, Olschewski A, et aclass="underline" Hypoxic pulmonary vasoconstriction: A multifactorial response? //Am J Physiol Lung Cell Mol Physiol. 2001. 281. P.314-317.
57.West JB, Dollery CT, Naimark A: Distribution of blood flow in isolated lungs: Relation to vascular and alveolar pressures. // J Appl Physiol. 1964. 19. P.713-724.
document:
$pr:
version: 01-2007.1
codepage: windows-1251
type: klinrek
id: kli8180151
meta:
author:
fio[ru]: Г.В. Неклюдова, Ж.К. Науменко
codes:
next:
type: dklinrek
code: I.II
Респираторная система предназначена в основном для газообмена, но она также играет важную роль в регуляции кислотноосновного статуса организма. Необходимо знать причины, которые изменяют кислотноосновной баланс.
Некоторое количество СО<sub>2</sub> взаимодействует с водой, что приводит к образованию углекислоты (H<sub>2</sub>CO<sub>3</sub>), которая в свою очередь диссоциирует на ионы бикарбоната (HCO<sub>3</sub><sup> - </sup>) и ионы водорода (H<sup>+</sup>):
align: center
<sub>СО</sub><sub>2</sub><sub> </sub>+ H<sub>2</sub>O<sub> </sub>«<sub>2</sub>CO<sub>3 </sub>«<sup>+</sup> + HCO<sub>3</sub><sup> - </sup>,<sup> </sup><sup>(1)</sup>
align: center
СО<sub>2</sub> + OH<sup> - </sup> «HCO<sub>3</sub><sup> - </sup>. (2)
Гидратация СО<sub>2</sub> в плазме крови является очень медленной химической реакцией, и концентрация растворенного СО<sub>2</sub> значительно выше концентрации H<sub>2</sub>CO<sub>3</sub>. В эритроцитах эта реакция протекает гораздо быстрее, поскольку в эритроцитах содержится фермент, ускоряющий гидратацию СО<sub>2</sub>. Таким образом, значительное количество ионов бикарбоната формируется в эритроцитах. Этот энзим присутствует не только в эритроцитах, но и во многих других клетках, таких, как эндотелий легких, клетки почек [1 - 4]. В физиологических условиях количество H<sub>2</sub>CO<sub>3</sub> в биологических жидкостях мало.
Относительное количество HCO<sub>3</sub><sup> - </sup>и СО<sub>2</sub> может быть определено с помощью уравнения HendersonHasselbalch:
pH = pK + log ([HCO<sub>3</sub><sup> - </sup>]:альфа*P<sub>CO2</sub>), (3)
где pH представляет собой отрицательный логарифм концентрации ионов водорода; pK - константа диссоциации угольной кислоты, равная 6,10; pK представляет собой pH, при котором концентрации HCO<sub>3</sub><sup> - </sup>и растворенного СО<sub>2</sub> равны; альфа - коэффициент растворимости, равный 0,0301 ммоль/л/ мм рт.ст. при физиологическом уровне pH, зависит от температуры; P<sub>CO</sub><sub>2</sub> - парциальное напряжение СО<sub>2</sub>.
Уравнение (3) может быть преобразовано в следующий вид:
H<sup>+ </sup>= 24 P<sub>CO</sub><sub>2</sub>: HCO<sub>3</sub><sup> - </sup>.
Используя величины P<sub>CO</sub><sub>2</sub> и HCO<sub>3</sub><sup> - </sup>, выраженные в мм рт.ст. и ммоль/л соответ-ственно, концентрацию H<sup>+</sup>, определенная в нмоль/л, можно преобразовать в pH. pH, равный 7,4, соответствует концентрации H<sup>+</sup>= 40 нмоль/л. В физиологических условиях, когда pH=7,4, концентрация HCO<sub>3</sub><sup> - </sup> в плазме крови в 20 раз больше, чем концентрация растворенного CO<sub>2</sub>.
pH плазмы крови на 0,2 единицы выше, чем pH эритроцитов. Измерение внутриклеточного уровня pH довольно сложно, попытки его определения немногочисленны. Предполагается, что pH плазмы крови отражает pH внутренней среды всего организма. Однако это упрощение не всегда может быть приемлемо: например, у пациентов с повышенной потерей ионов К<sup>+</sup> клеточный компонент может иметь сниженный, а плазма - увеличенный pH. Так как pH измеряется в плазме крови, более правильно говорить «ацидемия» или «алкалемия», чем «ацидоз» или «алкалоз».