Выбрать главу

Эти первые удовлетворительные результаты еще не полны. Они установлены пока только для очень специального случая прямолинейного равномерного движения частицы в отсутствии внешнего поля. Однако не составляет особого труда обобщить эти результаты. Рассмотрим, например, движение частицы в постоянном поле. Теория Якоби предлагает рассматривать траектории частиц как лучи распространения некоторых волн. Отождествляя принцип наименьшего действия и принцип Ферма, снова приходим к тому же соотношению, связывающему частицу с ее волной: энергия (постоянная) частицы равна частоте волны, умноженной на h, а импульс частицы, который меняется в поле сил от точки к точке, равен постоянной h, деленной на длину соответствующей волны, подобным же образом меняющуюся в пространстве.Можно и дальше обобщить эти результаты, рассмотрев случаи, когда поля зависят от времени. В этом случае снова обнаружим, что соотношения между динамическими характеристиками частицы и частотой и длиной связанной с ней волны остаются теми же самыми.

Обобщая таким образом параллелизм между частицей и связанной с ней волной, мы идем по правильному пути. Действительно, если мы рассмотрим, как ведут себя внутри атома Бора волны, связанные с электронами, придем к пониманию внутреннего смысла условий квантования: связанная с электроном волна оказывается резонансной как раз на длине его траектории. Иными словами, волна, соответствующая стационарному состоянию атомного электрона, сама стационарна в смысле теории колебаний.

Чтобы осознать действительную важность этого результата, напомним кратко, что такое стоячая стационарная волна. Если в ограниченной среде могут распространяться волны какого угодно сорта, то в ней устанавливаются стоячие волны, т е. такие колебания, конфигурация которых в пространстве не меняется с течением времени. Форму этих колебаний можно сразу определить из характера уравнения, описывающего распространение, волны, геометрии границ среды и условий на этих границах. Например, часто бывает, что условия на границах среды требуют, чтобы колебания на этих границах обращались в нуль (колеблющиеся струны с закрепленными концами, радиоантенны, изолированные на обоих концах и т д.). В этом случае мы должны искать решения волнового уравнения, периодические во времени и обращающиеся в нуль на границах среды; их амплитуды везде должны быть конечными, однозначно определенными и непрерывными внутри среды. Нахождение этого решения представляет собой математическую задачу о собственных значениях уравнения в частных производных для определенной области пространства и определенных граничных условий. Всем физикам известно много простых примеров такого рода решений. Это, например, упругие стоячие волны, возникающие в колеблющейся струне с закрепленными концами, частота которых кратна основной частоте, или стоячие электромагнитные волны в антенне, изолированной на одном конце с заземленным другим; стоячие волны, длины которых равны учетверенной длине антенны, деленной на последовательные нечетные целые числа.

Применение только что рассмотренной теории колебаний к атому требует, чтобы мы считали стационарные боровские состояния соответствующими стационарным волнам, связанным с атомными электронами.

Несомненно, что такая интерпретация проливает свет на истинный смысл условий квантования и делает весьма вероятным уточнение основных идей, которые мы обрисовали выше, и того пути, по которому они привели нас к взаимосвязи волн и частиц. Однако для лучшего понимания материала последующих глав необходимо особо подчеркнуть две трудности.

Первая возникает, когда мы хотим убедиться в стационарном характере волн, связанных со стационарным состоянием атома, и пользуемся при этом формулой, сопоставляющей движение частицы распространению волны в смысле геометрической оптики. По существу, переводя на квантовый язык идеи, хорошо известные в аналитической механике, мы устанавливаем соответствие между траекториями частицы, какими их представляем себе классически, и лучами, по которым распространяются волны. Мы уже отмечали, что геометрическая оптика с точки зрения волновых представлений – лишь первое приближение, справедливое в том случае, когда волны распространяются свободно, не встречая никаких препятствий, и когда, кроме того, скорость распространения не меняется слишком быстро от точки к точке. Теперь уже легко видеть, что второе условие для волн, связанных с электроном внутри атома, конечно, не выполняется. Следовательно, путь, каким мы пришли к стационарному характеру волны, отвечающей стационарному состоянию атома, нельзя признать строгим.

Избежать этого можно, лишь получив уравнение распространения волны, связанной с электроном, и решив задачу о собственных значениях для волн внутри атома, которая при этом возникает.

Однако необходимо особо подчеркнуть главную идею, содержащуюся в предыдущем рассуждении. Эта важная идея заключается в следующем: так как геометрическая оптика есть только приближение, верное в определенных условиях, и соответствие установлено между классической динамикой и распространением волн по законам геометрической оптики, то вполне возможно, что классическая динамика тоже лишь приближение, имеющее те же пределы применимости, что и геометрическая оптика, перефразировкой которой она, в известном смысле, является.

Во всех случаях, когда волна, связанная с частицей, распространяется не по законам геометрической оптики (а мы уже видели, что это бывает как раз в случае волн, связанных с электронами в квантованных атомных системах), динамическое поведение частицы нельзя описывать, исходя из понятий и законов классической механики. Именно поэтому механику Ньютона и даже механику Эйнштейна нужно впредь называть старой механикой, и необходимо создать новую, в рамках которой эта старая будет первым приближением, справедливым в определенных условиях. Короче говоря, возникла необходимость, как мы писали в те годы, создать новую механику волнового характера, которая будет относиться к старой механике, как волновая оптика к геометрической оптике. Точно и тщательно эта идея была осуществлена в бессмертной работе Шредингера.

В чем же заключается вторая трудность? Прежде чем перейти к существу дела, рассмотрим в качестве простого примера систему, в которой возникают стационарные волны, – струну с закрепленными концами. В такой струне может возбуждаться бесконечное число стоячих волн. Случай, когда струна несет только одно стационарное колебание, т е. когда она движется строго по синусоиде, исключительный. Обычно струна после нескольких начальных колебаний начинает двигаться по очень сложному закону за исключением ее концов, которые, естественно, не двигаются вообще. Однако математическая теория рядов Фурье гласит, что движение струны, каким бы сложным оно ни было, может быть представлено в виде суммы стационарных колебаний. Математически этот результат выражают следующим образом: синусоидальные функции, описывающие отдельные стационарные волны, образуют полную систему ортогональных функций. Этот результат можно обобщить на случай систем более сложных, чем струна с закрепленными концами. Можно показать, что если в какой-либо области пространства возникают стационарные колебания, то, какова бы ни была их форма, ее можно представить в виде суперпозиции некоторого числа (конечного или бесконечного) стационарных колебаний.

Применение этих общих идей к квантованным атомным системам сразу же приводит к упомянутой трудности. По первоначальным представлениям Бора атом всегда находится в том или ином стационарном состоянии. При этом предполагается дискретность, как раз и означающая квантование. Такой взгляд ни в чем не противоречит классической картине состояния атома. Однако если предположить, что стационарное состояние соответствует стационарным колебаниям, то общая теория, которую мы только что бегло описали, приводит к такому выводу: состояние атома в данный момент времени может свестись к единственному стационарному состоянию только в исключительных случаях. В общем же случае оно представляет собой наложение определенного числа стационарных состояний. Можно сказать, что с точки зрения классических представлений такое утверждение лишено всякого смысла, ибо невозможно себе представить, что атом может в один и тот же момент времени находиться в нескольких состояниях. Эта трудность показывает, что развитие новой механики претендует на глубокую перестройку основных понятий классической физики, перестройку, необходимость которой, как мы уже говорили, в зародыше содержится уже в самом существовании кванта действия. И только вероятностная интерпретация новой механики позволит нам скоро придать суперпозиции нескольких состояний физический смысл.