То, что уравнения Дирака допускают возможность существования состояний с отрицательной энергией, это, несомненно, результат их релятивистского характера. Действительно, даже в релятивистской динамике электрона, развитой Эйнштейном в рамках специальной теории относительности, обнаруживается возможность движения с отрицательной энергией. Однако в то время в динамике Эйнштейна трудность была не очень серьезной, ибо она, как и все предыдущие теории, предполагала, что все физические процессы непрерывны. А так как собственная масса электрона конечна, то он всегда обладает конечной внутренней энергией в соответствии с релятивистским принципом эквивалентности массы и энергии. Поскольку эта внутренняя энергия не может исчезать, то мы не можем непрерывным образом перейти от состояния с положительной к состоянию с отрицательной энергией. Таким образом, предположение о непрерывности физических процессов полностью исключает такого рода переход.
Следовательно, достаточно предположить, что в начальный момент времени все электроны находятся в состояниях с положительной энергией, чтобы увидеть, что состояние всегда остается таким же. Трудность становится гораздо более серьезной в механике Дирака, ибо это механика квантовая, допускающая существование дискретных переходов в физических явлениях. Можно легко видеть, что переходы между состояниями с положительной и отрицательной энергией не только возможны, но и должны происходить довольно часто. Клейн привел интересный пример того, как электрон с положительной энергией, попав в область, где действует быстро меняющееся поле, может покинуть эту область в состоянии с отрицательной энергией. Следовательно, то, что экспериментально электрон с отрицательной энергией ни разу не был обнаружен, оказывалось очень опасно для теории Дирака.
Чтобы обойти эту трудность, Дирак выдвинул очень остроумную идею. Заметив, что согласно принципу Паули, о котором мы поговорим в следующей главе, в одном состоянии не может находиться более одного электрона, он предположил, что в нормальном состоянии окружающего мира все состояния с отрицательной энергией заняты электронами. Отсюда следует, что плотность электронов с отрицательной энергией везде одинакова. Дирак выдвинул предположение, что эту однородную плотность наблюдать невозможно. В то же время электронов существует больше, чем необходимо для заполнения всех состояний с отрицательной энергией.
Этот избыток и представляют собой электроны с положительной энергией, их-то мы и можем наблюдать в наших экспериментах. В исключительных случаях электрон с отрицательной энергией может под действием внешней силы перейти в состояние с положительной энергией. При этом мгновенно появляется наблюдаемый электрон и в то же время образуется дырка, пустое место, в распределении электронов с отрицательной энергией. Дирак показал, что такая дырка может наблюдаться экспериментально и должна вести себя подобно частице с массой, равной массе электрона и равным ему, но противоположным по знаку зарядом. Мы будем воспринимать его как антиэлектрон, положительный электрон. Эта неожиданно образовавшаяся дырка не может долго существовать. Она будет заполнена электроном с положительной энергией, который испытает спонтанный переход в пустое состояние с отрицательной энергией, сопровождающийся излучением. Итак, Дирак объяснил не наблюдаемость состояний с отрицательной энергией и в то же время предсказал возможность, пусть редкого и эфемерного существования, положительных электронов.
Несомненно, гипотеза Дирака была очень проста, однако на первый взгляд она казалось несколько искусственной. Возможно, что большое число физиков оставалось бы настроенными в этом отношении несколько скептически, если бы эксперимент немедленно не доказал существования положительных электронов, характерные свойства которых только что предсказал Дирак.
Действительно, в 1932 г. сначала тонкие эксперименты Андерсона, а затем и Блэкетта и Оккиалини обнаружили, что при распаде атомов под действием космических лучей появляются частицы, которые ведут себя в точности как положительные электроны. Хотя абсолютно строго еще и нельзя было утверждать, что масса новых частиц равна массе электрона, а их электрический заряд равен и противоположен по знаку заряду электрона, последующие эксперименты делали это совпадение все более вероятным. Далее, оказалось, что положительные электроны имеют тенденцию быстро исчезать (аннигилировать), приходя в соприкосновение с веществом, причем аннигиляция сопровождается излучением. Эксперименты Тибо и Жолио-Кюри, казалось, не оставили в этом вопросе никакого сомнения.
Исключительные обстоятельства, при которых появляются положительные электроны и их способность к аннигиляции, сокращающая время их существования, – это как раз и есть те свойства, которые предвидел Дирак. Таким образом, ситуация оказалась обратной: существование решений уравнений Дирака с отрицательной энергией не только не ставит их под сомнение, но, наоборот, показывает, что эти уравнения предсказали существование и описали свойства положительных электронов.
Тем не менее мы должны признать, что дираковские представления о дырках приводят к серьезным трудностям, касающимся электромагнитных свойств вакуума. Вполне вероятно, что теория Дирака будет преобразована и установит большую симметрию между электронами обоих типов, в результате чего идея о дырках вместе со связанными с ней трудностями будет отброшена. В то же время несомненно, что экспериментальное открытие положительных электронов (ныне носящих название позитронов) представляет собой новое и замечательное подтверждение идей, лежащих в основе механики Дирака. Симметрия между обоими типами электронов, которая устанавливается в результате более тщательного исследования некоторых аналитических особенностей уравнений Дирака, представляет большой интерес и несомненно ей предстоит сыграть важную роль в дальнейшем развитии физических теорий.
Глава XII. Волновая механика систем и принцип Паули
1. Волновая механика систем частиц
До сих пор мы рассматривали новую механику только для случая, когда в заданном силовом поле движется одна частица. Иногда мы предполагали, что тот или иной принцип справедлив и для системы; а поскольку физика предполагает существенно дискретный характер элементарных физических представлений, он справедлив и для группы частиц. Теперь необходимо уточнить, как выглядит эта волновая механика систем частиц.
Отметим с самого начала, что настоящую систему образуют только взаимодействующие друг с другом частицы: невзаимодействующие частицы можно рассматривать независимо друг от друга, и мы снова приходим к случаю одной частицы. Это замечание, конечно, справедливо как в старой, так и в новой механике.
Напомним теперь, как классическая механика решает проблему движения системы взаимодействующих частиц. Для каждой из этих частиц выписываются основные уравнения Ньютона, выражающие пропорциональность между ускорением материальной точки и действующей на нее силой. Поскольку предполагаем, что между частицами имеется взаимодействие, т е. сила, действующая на каждую частицу, зависит от положения всех остальных частиц, то полученные таким образом уравнения образуют систему дифференциальных уравнений. Если их выписать в явном виде в прямоугольных декартовых координатах, то число этих уравнений будет равно утроенному числу частиц, ибо каждая частица имеет три координаты.
Решение этой системы уравнений, если оно возможно, дает выражение для каждой координаты как функции времени, т е. позволяет проследить положение и движение каждой частицы с течением времени. Кроме того, из всех решений этих уравнений нужно взять только то решение, которое полностью определено, если заданы положения и скорости частиц в начальный момент времени, иными словами, если задано начальное положение и состояние движения системы. Так, оказывается, что в классической динамике систем выполняется механический детерминизм.
Не вдаваясь слишком глубоко в описание классической механики систем, мы только напомним, что уравнения движения можно во многих случаях привести к хорошо известным уравнениям Лагранжа и Гамильтона. Однако благодаря более абстрактной форме указанных уравнений движения полезно рассмотреть новое геометрическое представление этой системы. Вместо того чтобы рассматривать систему в физическом пространстве трех измерений и говорить о положении каждой ее частицы в каждый момент времени, мы можем связать координаты всех частиц и мысленно сконструировать тем самым абстрактное пространство, число измерений которого втрое превышает число частиц (причем это число измерений можно уменьшить, если существуют соотношения, ограничивающие свободу движения частиц). В этом абстрактном пространстве, носящем название конфигурационного пространства, каждое состояние системы представлено в виде точки, координаты которой равны координатам частиц системы. Эволюция системы с течением времени будет, таким образом, описываться перемещением этой изображающей точки в конфигурационном пространстве. Вся задача механики состоит в этом случае в вычислении траектории и скорости изображающей точки. Группу уравнений классической динамики можно рассматривать как уравнения движения этой точки. Итак, мы свели изучение движения множества точек в физическом трехмерном пространстве к исследованию поведения единственной точки в абстрактном конфигурационном пространстве. Механический детерминизм при этом просто выражается словами, что движение изображающей точки полностью определено, если известны ее начальное положение и скорость в конфигурационном пространстве.