Перестановка частиц одинаковой природы приводит в квантовой механике систем к очень важным последствиям. Рассмотрим систему, состоящую из частиц одинаковой природы. Пусть «КСИ» – одна из возможных волновых функций системы. Согласно определению, эта волновая функция называется симметричной по отношению к двум частицам, если при перестановке координат двух частиц выражение для «КСИ»-функции не меняется. Наоборот, она называется антисимметричной по отношению к двум частицам, если перестановка координат двух частиц меняет лишь знак «КСИ»-функции. Важно отметить, что в общем случае «КСИ»-функция не будет ни симметричной, ни антисимметричной. Однако взаимозаменяемость частиц одинаковой природы позволяет нам доказать следующую важную теорему: если система состоит из частиц одинаковой природы, то всегда существуют волновые функции, одни симметричные, другие антисимметричные по отношению ко всем парам частиц одинаковой природы.
Будем называть состояние, волновая функция которого симметрична, симметричным состоянием системы, а состояние, волновая функция которого антисимметрична, – антисимметричным состоянием системы. Тот факт, что потенциал взаимодействия симметрично зависит от координат каждой пары частиц, позволяет нам доказать теорему, не менее важную, чем первая: невозможно осуществить переход системы из симметричного состояния в антисимметричное и обратно.
Иными словами, невозможны никакие иные комбинации, в смысле Ритца, кроме как между состояниями одинаковой природы. Отсюда следует, что симметричные состояния, с одной стороны, и антисимметричные, с другой, образуют два совершенно отдельных ансамбля, между которыми невозможны никакие переходы. Таким образом, волновая механика допускает принцип, который утверждает, что для частиц определенного сорта существуют в природе лишь симметричные или лишь антисимметричные состояния, поскольку если в начальный момент времени существовали только состояния одного типа, то они навсегда и останутся такими. Этот принцип не является следствием волновой механики, допускающей любые состояния, однако он ей и не противоречит. Теперь мы должны пояснить, как Паули пришел к предположению о существовании этого принципа по крайней мере для электронов.
При изучении строения атома мы отмечали, что существует насыщение энергетических уровней, и подчеркивали фундаментальную важность этого явления, так как именно оно определяет эволюцию структуры атома в периодической системе элементов и все различия в химических, оптических и магнитных свойствах этих элементов. Мы также говорили о том, что порядок последовательного заполнения уровней при добавлении новых электронов был установлен эмпирически: он задается правилом Стонера, которое вначале теоретически не было подтверждено.
Благодаря правилу Стонера стало известно максимальное число электронов, которое может находиться на каждом энергетическом уровне атома. Пытаясь объяснить эти факты, Паули выдвинул замечательную идею о расщеплении уровней, происходящем в результате того, что два электрона не могут находиться в строго тождественных квантовых состояниях, т е. описываться одними и теми же квантовыми числами. Иными словами, наличие электрона в одном квантовом состоянии запрещает появление в том же состоянии еще одного электрона. Отсюда название принцип запрета, данное этому новому физическому постулату. На языке волновой механики принцип Паули выражается следующим образом: электроны могут находиться только в антисимметричных состояниях.Мы видели, что такое утверждение не противоречит принципам новой механики. Чтобы показать, что обе приведенные формулировки принципа запрета действительно совпадают, предположим, что система содержит два электрона в одном и том же индивидуальном состоянии. Но в соответствии со второй формулировкой это предположение означает, что волновая функция антисимметрична по отношению к этой паре электронов, она должна, следовательно, менять знак при перестановке этих электронов местами. Однако, так как индивидуальные состояния электронов тождественны, то такая перестановка не должна менять волновую функцию.
Итак, поскольку волновая функция одновременно и меняет и не меняет знак при перестановке электронов, то она должна быть равна нулю. На языке волновой механики это означает, что такого состояния не существует. Таким образом, два электрона не могут находиться в одном и том же индивидуальном состоянии и мы видим, что вторая формулировка приводит нас к первой. Легко доказать также и обратное.
Принцип Паули можно, следовательно, выразить в волновой механике аналитически, записав волновые функции систем, содержащих электроны, в антисимметричной форме по отношению к электронным парам. Однако, применяя этот принцип на деле, следует помнить, что электрон обладает спином. Поэтому его индивидуальное состояние является функцией не только его координат, но также и значения его спина. Волновые функции, допускаемые принципом Паули, антисимметричны по отношению ко всем пространственным координатам и спину.
Огромная важность принципа Паули заключается в том, что он дал возможность объяснить насыщение уровней. Он позволил прямым путем получить правило Стонера. Достаточно учесть, что несколько различных состояний, т е. состояний, соответствующих различным комбинациям квантовых чисел, обладают одинаковой энергией и, следовательно, относятся к одному энергетическому уровню. Таким образом, достаточно подсчитать для каждого энергетического уровня, сколько ему соответствует различных квантовых состояний, и мы узнаем, согласно принципу Паули, максимальное число электронов на этом уровне, ибо оно достигает максимума, когда заполнено каждое квантовое состояние. Из этого подсчета и вытекает правило Стонера. Принцип Паули имеет фундаментальное назначение при построении волновой механики систем. В частности, он приводит к статистике Ферми – Дирака для электронов.
Для электронов единственно возможными оказываются антисимметричные состояния. Возникает вопрос, а как обстоит дело с другими элементарными и неэлементарными частицами микромира? Применим ли принцип Паули также и к ним? Или, наоборот, для них возможны лишь симметричные состояния? Или, наконец, допустимы и те и Другие? По-видимому, эта последняя альтернатива никогда не реализуется: в Природе осуществляются только симметричные или антисимметричные состояния.
Первый случай – это случай электронов, а также некоторых атомных ядер: в одном квантовом состоянии не может быть больше одного электрона, и они всегда подчиняются, как мы видели, статистике Ферми – Дирака.
Второй случай охватывает фотоны, «альфа»-частицы и остальные атомные ядра. При этом нет никаких препятствий для накопления любого числа частиц в одном квантовом состоянии, ибо симметричная функция не меняется при перемене местами двух частиц одной природы: поэтому в этом случае частицы подчиняются статистике Бозе – Эйнштейна. Для фотонов она изображается формулой Планка. Вообще оказывается, что частицы, спин которых нечетный в единицах h/4»пи», подчиняются принципу Паули и статистике Ферми – Дирака. Частицы же, спин которых равен нулю или четный в единицах h/4»пи», подчиняются статистике Бозе – Эйнштейна. Это очень важное правило. Вопросы спина и статистики играют большую роль в исследовании полосатых спектров, а также в изучении строения атомного ядра.
Принцип Паули выражает весьма специфическое свойство электронов и других частиц, которые ему подчиняются. Действительно, на сегодняшний день почти невозможно понять, каким образом две тождественные частицы взаимно запрещают друг другу занять одно и то же состояние. Этот тип взаимодействия совершенно отличается от взаимодействий в классической физике. Его физическая природа пока нам совершенно неизвестна. По-видимому, это одна из самых важных задач и к тому же самых трудных, которую предстоит решить физикам-теоретикам будущего, чтобы выяснить физические истоки принципа запрета.
Чтобы показать, насколько далеко мы ушли от старых представлений, рассмотрим случай газа из частиц одинаковой природы, подчиняющихся принципу Паули, например электронного газа. Согласно принципу запрета, никакие два электрона этого газа не могут находиться в одном и том же состоянии прямолинейного равномерного движения, ибо здесь состояния прямолинейного равномерного движения квантованы. С. классической точки зрения это означало бы, что частица, расположенная в некоторой точке сосуда, содержащего газ, будет мешать любой другой частице газа иметь Такое же состояние. Это совершенно парадоксально, так как сосуд с газом можно взять сколь угодно большим и, следовательно, расстояние между частицами может быть сколь угодно велико. Однако этот парадокс тесно связан с соотношениями неопределенности Гейзенберга и исчезает, если принять их во внимание. Действительно, прямолинейное и равномерное движение частиц соответствует вполне определенной энергии этих частиц.