Выбрать главу

Z — количество протонов,

А — количество протонов и нейтронов (общее количество частиц в ядре),

A-Z— количество нейтронов.

Резерфорд открыл существование альфа-излучения и бета-излучения, α-частицы представляют собой ядра гелия (то есть они состоят из двух протонов и двух нейтронов). Когда элемент испускает альфа-частицу, это означает, что он теряет два протона, таким образом элемент изменяется, его атомное число уменьшается (-2), и происходит превращение элемента. Например, уран обладает 92 протонами, а когда он испускает альфа-частицу, то превращается в торий, обладающий 90 протонами.

Бета-распад (β) представляет собой внутренне более сложное физическое явление и возникает, когда нейтрон превращается в протон или наоборот. При этом взаимном обмене возникают новые частицы. Бета-распад подтверждает, что фундаментальные частицы, "хотя и имеют определенные свойства, не являются постоянными структурами, и одна из них может превращаться в другие".

Бета-распад классифицируется по двум типам в соответствии с механизмами распада: β -распад и β+-распад. При β -распаде электрон испускается непосредственно из атомного ядра, это не связано с ионизацией одного из электронов, составляющих электронное облако, окутывающее ядро. Один из нейтронов ядра (я) отделяется и превращается в протон (р*), остающийся в ядре, и электрон (е), который испускается. В ходе этого процесса возникает электронное антинейтрино (ν,). Процесс можно представить как:

n → р* + е- + ve.

При изменении числа протонов (+1) изменяется атомное число, и элемент становится другим. При этом массовое число не изменяется (атом теряет нейтрон, но получает протон). Именно это происходит с изотопом тория 23490Th. После бета-распада, при котором испускается электрон, атом превращается в один из изотопов протактиния, который обозначается 23491Ра.

Второй тип бета-распада обозначается β+-распад, при нем возникает позитрон (е*), который является античастицей, имеющей одинаковую с электроном массу и при этом отрицательный заряд. В данном случае ядро теряет протон, а вместо него появляются нейтрон, позитрон и электронное нейтрино. Это вновь означает, что количество частиц в ядре не меняется (вместо протона появляется нейтрон), но происходит трансмутация элемента, потеря протона заставляет его изменить химическую идентификацию. В ситуации с азотом 137Ν, который при испускании позитрона превращается в изотоп углерода, обозначаемый 136C, β+-распад можно представить так:

р+ → n + е+ + vе.

ГАММА-ИЗЛУЧЕНИЕ

Гамма-излучение отличается от процессов альфа- и бета-распада тем, что при нем испускаются не частицы, а электромагнитное излучение, фотоны с высокой энергией. Гамма-излучение происходит на разных фазах радиоактивных процессов по разным причинам: например, когда ядерная частица переходит из возбужденного состояния в основное. При этом виде излучения не происходит изменения компонентов ядра (или атома). Однако, в связи с высоким уровнем энергии, возникающая радиация имеет существенный проникающий характер и наиболее вредна, так как способна вступать во взаимодействие с клетками и вызывать их изменения при взаимодействии с цепочкой ДНК.

ПРОНИКАЮЩАЯ СПОСОБНОСТЬ

По своим характеристикам альфа-, бета- и гамма-излучение различаются по проникающей способности и ионизации. Так как бета-излучение состоит из электронов или позитронов, имеющих меньшую массу по сравнению с альфа-частицами, возникающая энергия приобретает больший момент силы. Альфа-излучение состоит из двух протонов и двух нейтронов и легко поглощается материей. Масса протона или нейтрона почти в 2000 раз больше массы электрона, таким образом вероятность столкновения и сила взаимодействия значительно больше. Это объясняет, почему проникающая способность альфа-лучей гораздо меньше. Гамма-излучение по сути не является потоком массивных частиц, это электромагнитная волна, похожая на видимый свет, но несущая значительно больше энергии.

На графике представлена тенденция по изменению атомного и массового числа, являющаяся результатом процессов альфа и бета-распада. В конце цели распада находится свинец (РЬ), его нерадиоактивный изотоп.

РАДИОАКТИВНЫЕ РЯДЫ

При радиоактивном распаде, как правило, получившиеся элементы тоже радиоактивны, так что после окончания первого распада начинается новый. На последнем этапе радиоактивной цепочки формируется стабильный элемент, цикл превращений останавливается. Известны три естественных ряда: ряд урана (см. рисунок), актиния и тория.