Выбрать главу

В то время физики, вооружившись представлением о структуре атома, состоящего из ядра, которое окружено электронами, подчиняющимися законам квантовой механики, начали атаку на само ядро. 1931 год отмечен важным открытием. Во время бомбардировки бериллия альфа-частицами было обнаружено новое весьма мощное излучение. Фредерик Жолио и Ирэн Жолио-Кюри [4] пропустили это излучение через парафин и заметили, что на пути неизвестных лучей возникают протоны, т.е. положительно заряженные частицы, входящие в состав атомного ядра. Новое излучение оказалось таким мощным, что оно не только выбивало электроны из атома (как это делают фотоны высоких энергий, гамма-лучи или рентгеновские лучи), но и разрушало само ядро. Это открытие наделало много шуму, но из-за недостаточности данных французские ученые неправильно истолковали природу излучения, испускаемого бериллием. Они ошибочно утверждали, что неизвестные лучи представляют собой электромагнитное излучение, т.е. фотоны, подобные гамма-лучам.

Британский ученый Чедвик, поддерживаемый Резерфордом, в лаборатории Кавендиша, оснащенной более совершенным оборудованием, чем в «героические годы», провел эксперимент, раскрывший истинную природу излучения бериллия: это оказался поток частиц, обладавших массой протона, но не имевших никакого электрического заряда.

Открытие нейтрона – так назвали новую элементарную частицу – завершило «модель» атома Резерфорда-Бора: Гейзенберг выдвинул гипотезу[5] о том, что ядро состоит из протонов – носителей положительного заряда и нейтронов, лишенных электрического, заряда. Это дало возможность объяснить существование изотопов – разновидностей одного и того же вещества с разным атомным весом; ядра изотопов содержат одинаковое число протонов, а следовательно, и положительных зарядов (атомное число, характеризующее их химическое сродство), но различное число нейтронов.

При изучении атомного ядра обнаружились новые затруднения. Сила, которая связывает электроны с ядром, известна – это кулоновское притяжение между разноименными электрическими зарядами. Но сила, которая соединяет протоны и нейтроны в ядро, не является ни тяготением, ни электрическим взаимодействием. Сила эта действует только на очень коротких расстояниях, но достигает громадной величины: вырвать протон или нейтрон из ядра можно только в результате бомбардировки ядра снарядами с высокими энергиями. Природа ядерных сил остается в центре дискуссий теоретической физики и на сегодняшний день.

Из работ, опубликованных Оппенгеймером в тот период, следует отметить исследование ядерного превращения лития при соударении с протоном. Ядро лития, которое содержит три протона и четыре нейтрона, поглощает падающий на него протон и изменяет свою природу: оно становится ядром бериллия – элемента с четырьмя протонами. Одновременно ядро отдает энергию в виде электромагнитного излучения – гамма-лучей с высокой энергией.

В годы, предшествовавшие второй мировой войне, было открыто множество ядерных реакций. Одни элементы превращались в другие под действием альфа-частиц, (ядра гелия), дейтронов (ядра тяжелого водорода: один протон и один нейтрон), протонов и нейтронов. Одновременно происходило излучение энергии либо в виде гамма-лучей (фотоны), либо в виде потоков различных частиц. Волновая механика продолжала оставаться инструментом теоретического анализа, с помощью которого удавалось объяснять, а иной раз и предсказывать физический механизм этих реакций и природу испускаемого излучения. Исходя из позиций волновой механики, удалось предсказать существование неизвестной еще тогда частицы – мезона, масса которого имеет промежуточное значение между массами протона и электрона. Мезон в поле ядерных сил играет роль, аналогичную роли фотона в электромагнитном поле.

Накануне мировой войны Оппенгеймер был признан одним из крупнейших теоретиков новейшей физики, а также блестящим преподавателем, воспитавшим в США плеяду молодых ученых, среди которых он пользовался огромной популярностью.

Столкновение с политикой

Так же как и в студенческие годы, интересы Оппенгеймера не ограничивались научными исследованиями. Однако теперь его волновали не средневековые поэты и не индийские мистики, а судьба мира, над которым нависла угроза гитлеризма. В немецких университетах, которые Оппенгеймер так хорошо знал, нацисты подвергли гонениям ученых «неарийского» происхождения, а вместе с ними и их коллег, которые пытались встать на защиту своих товарищей. Принуждение и страх вытеснили из Геттингена атмосферу свободного интеллектуального соперничества. Большинство немецких профессоров отступило перед натиском темных сил; это были люди, готовившие себя к тихой университетской деятельности и не обладавшие ни стойким самосознанием, ни политическим мужеством. Несколько посредственностей, а вместе с ними и два лауреата Нобелевской премии – Ленард и Штарк, активно поддерживали глумления национал-социалистов, не дожидаясь конца Веймарской республики, очевидно, следуя пословице «с волками жить – по волчьи выть». Эта группа мракобесов объявила «еврейской физикой» теорию относительности Эйнштейна и даже квантовую механику. Нильс Бор стал для них не более чем просто полуарийцем.

вернуться

4

См. книгу этой же серии: Пьер Бикар. Фредерик Жолио-Кюри и атомная энергия. М., Госатомиздат, 1962,

вернуться

5

Впервые эта гипотеза была высказана советским ученым Д.Д. Иваненко. – Прим. ред.