Ученые-атомники оказались перед проблемой, уклониться от которой значило пойти на сговор с собственной совестью. С одной стороны, продолжая свои исследования взрывной реакции деления урана, они шли к созданию такого оружия, которое далеко превзошло бы по своим возможностям все, что когда-либо делали люди для взаимного уничтожения, и которое могло бы поставить под угрозу существование человечества. С другой стороны, отсрочка работ или изменение их направления могли помочь вырваться вперед той горсточке физиков, которые остались служить нацизму, и тогда оружие попало бы в руки губителей всякой надежды на лучшее будущее.
Рассказывают, что когда перед Отто Ганом кто-то начал развивать возможные перспективы применения ядерных превращений, то Ган закричал: «Бог этого не допустит!». В это же самое время немецкие солдаты застегивали на себе ремни с пряжками, на которых были выбиты слова: «Gott mit uns» [6]. Тем не менее факт остается фактом, хотя о нем достоверно стало известно только значительно позже, физики, оставшиеся в Германии, изменили направление своих исследований, проводившихся во время войны, и их работы уже не могли привести к созданию бомбы.
Что касается венгерского физика Сцилларда, эмигрировавшего в Америку, то он предложил ученым прекратить всякую публикацию работ, относящихся к делению урана, для того чтобы полученные результаты не могли быть использованы в Германии. В письме, написанном Фредерику Жолио, он сформулировал свое пожелание в следующей форме, прекрасно отражающей ту драматическую ситуацию, в которой тогда находились ученые: «Мы все надеемся, что количество выделяющихся нейтронов либо равно нолю, либо недостаточно и что нам не придется больше беспокоиться по этому поводу».
Однако через несколько недель решающий эксперимент, проведенный группой Жолио, разрушил отчаянные надежды Сцилларда: на 100 делящихся ядер урана французские физики насчитали от 280 до 420 вторичных нейтронов. Возможность цепной реакции оказалась, таким образом, подтвержденной цифрами.
Однако до практического осуществления реакции было еще далеко. Для того чтобы научиться управлять цепной реакцией, необходимо было лучше понять особенности этого нового явления, а следовательно, снова направить теоретические исследования к познанию атомного ядра. И тогда Нильс Бор, который находился еще в Копенгагене, но тоже собирался переехать в Америку, еще раз внес важный вклад в решение этой проблемы.
Почему в некоторых случаях ядро урана под ударом нейтрона раскалывается на множество осколков (как будто в результате потери внутреннего равновесия) вместо того, чтобы совершать такое же простое ядерное превращение, какое происходит с другими элементами, которые переходят при этом из одной клетки таблицы Менделеева в соседнюю? Чтобы это объяснить, представим себе ядро урана в виде капли жидкости: эта капля довольно тяжела, а когда ее утяжеляют еще больше, то она делится на две более мелких капельки. Такое представление помогает понять, что именно ядро урана, самого тяжелого элемента в природе, может стать предметом деления, если увеличивать его заряд. «Модель» ядра в виде капли жидкости позволила предпринять первую попытку дать математическое описание ядерного деления.
Однако природа сил, играющих основную роль в сцеплении и расщеплении атомного ядра, гораздо сложнее физического механизма сцепления молекул в капле жидкости. Для того чтобы рассчитать их действие, необходимо прибегнуть к волновой механике. Если бы нейтрон был только мельчайшим кусочком вещества, имеющим сферическую форму и подчиняющимся законам классической механики, то вероятность его столкновения с атомным ядром была бы настолько мала, что ядерную реакцию можно было бы считать невозможной. Диаметры нейтрона и ядра очень малы по сравнению с пространством, в котором они перемещаются. Вещество, кажущееся нам таким плотным – кусок урана, – в действительности представляет собой пустоту, где находятся частицы, разделенные громадными по сравнению с их размерами расстояниями. У нейтрона, направленного в толщу вещества, столько же шансов попасть в ядро, сколько у одного бильярдного шара попасть в другой, находящийся на расстоянии нескольких километров.
Но частицы в отличие от бильярдных шаров обладают не только свойствами массы и количества движения; их необходимо рассматривать также в сочетании с волной определенной длины. Роберт Оппенгеймер в одной из своих лекций говорил: «Волновая природа, присущая всей материи, проявляется в условиях бомбардировки одних материальных частиц, другими (медленными, с очень большой длиной волны) таким образом, что бомбардирующие частицы могут воздействовать на свои мишени гораздо чаще, чем это было бы возможно только в процессе столкновений. И даже сама невозможность точного определения относительного положения частиц заключает в себе скрытую возможность их взаимодействия на расстояниях, характеризуемых подчас длиной волны, а не физическими размерами частиц. Это обстоятельство является одной из причин того, что следы урана-235, присутствующие в естественном уране, могут захватывать достаточное количество пролетающих по соседству нейтронов; это позволяет поддерживать цепную реакцию в атомном реакторе». Оппенгеймер, таким образом, объясняет, почему нейтронные шарики наталкиваются на ядра, разбросанные в пространстве, а также почему медленные шарики (речь идет, конечно, об относительной медлительности) достигают своей цели лучше, чем быстрые: они имеют большую длину волны, соизмеримую с радиусом ядра.