Во втором эксперименте новой группе испытуемых был предоставлен первый набор вопросов вместе с ответами, рейтингом оценок, с рассказом о результатах экспериментов и разъяснением концепции калибровки – и затем их попросили дать 98% интервалы уверенности для новой группы вопросов. Прошедшие подготовку субъекты ошиблись в 19% случаях, что являет собой значительное улучшение их результата в 34% до подготовки, но всё ещё весьма далеко от хорошо откалиброванного результата в 2%.
Подобные уровни ошибок были обнаружены и у экспертов. Hynes и Vanmarke (1976) опросили семь всемирно известных геотехников на предмет высоты дамбы, которая вызовет разрушение фундамента из глинистых пород, и попросили оценить интервал 50% уверенности вокруг этой оценки. Оказалось, что ни один из предложенных интервалов не включал в себя правильную высоту. Christensen-Szalanski и Bushyhead (1981) опросили группу врачей на предмет вероятности пневмонии у 1531 пациента с кашлем. В наиболее точно указанном интервале уверенности с заявленной достоверностью в 88%, доля пациентов, действительно имевших пневмонию, была менее 20%.
Lichtenstein (1982) производит обзор 14 исследований на основании 34 экспериментов выполненных 23 исследователями, изучавшими особенности оценки достоверности собственных выводов людьми. Из них следовал мощнейший вывод о том, что люди всегда сверхуверены. В современных исследованиях на сверхуверенность уже не обращают внимания; но она продолжает попутно проявляться в почти каждом эксперименте, где субъектам позволяется давать оценки максимальных вероятностей.
Сверхуверенность в большой мере проявляется в сфере планирования, где она известна как ошибочность планирования. Buehler (1994) попросил студентов-психологов предсказать важный параметр – время сдачи их дипломных работ. Исследователи подождали, когда студенты приблизились к концу своих годичных проектов и затем попросили их реалистично оценить, когда они сдадут свои работы, а также, когда они сдадут свои работы, если всё пойдёт «так плохо, как только может». В среднем, студентам потребовалось 55 дней, чтобы завершить свои дипломы, на 22 дня больше, чем они ожидали, и на 7 дней больше, чем они ожидали в худшем случае.
Buehler (1995) опросил студентов о времени, к которому студенты на 50% уверены, на 75% уверены и на 99% уверены, что они закончат свои академические проекты. Только 13% участников закончили свои дипломы к моменту, которому приписывали 50% вероятность, только 19% закончили к моменту 75% оценки и 45% закончили к 99% уровню. Buehler et. al. (2002) пишет «результаты выхода на уровень 99% достоверности особенно впечатляющи. Даже когда их попросили сделать наиболее консервативное предсказание, в отношении которого они чувствовали абсолютную уверенность, что его достигнут, всё равно уверенность студентов в их временных оценках намного превосходила их реальные результаты»». Конец цитаты.
Итак, есть серьёзные основания считать, что мы должны крайне расширить границы уверенности в отношении вероятностей глобальных рисков, чтобы искомая величина попала внутрь заданного интервала.
Обозначим величиной N степень расширения интервала уверенности для некой величины A следующим образом: (A/N; A*N). Например, если мы оценивали нечто в 10%, и N=3, то интервал будет (3%; 30%). Каково должно быть N для глобальных рисков, пока сказать трудно, но мне кажется разумным выбрать N=10. В этом случае, мы с одной стороны, получаем очень широкие интервалы уверенности, в которые искомая величина, скорее всего, попадёт, а с другой стороны, эти интервалы будут различны для различных величин.
Другой способ определения N – изучить среднюю ошибку, даваемую экспертами в их оценках и ввести такую поправку, которая бы покрывала обычную ошибочность мнений. То, что в проектах ядерного реактора и космического челнока реальное значение N было между 40 и 100, говорит о том, что, возможно, мы слишком оптимистичны, когда принимаем его равным 10. Вопрос этот нуждается в дальнейшем изучении. Это обобщение не снижает ценности таких вычислений, поскольку разница между некоторыми рисками может оказаться в несколько порядков. А для принятия решения о важности противостоянии той или иной опасности нам нужно знать порядок величины риска, а не риск с точностью до второй цифры после запятой, как это можно и нужно в страховании и финансовых рисках.
Итак, мы предполагаем, что вероятность глобальных катастроф можно оценить в лучшем случае с точностью до порядка, причём точность такой оценки будет плюс-минус порядок, и что такого уровня оценки достаточно, чтобы определить необходимость дальнейшего внимательного исследования и мониторинга той или иной проблемы. (Очевидно, что по мере того, как проблема будет приближаться к нам по времени и конкретизироваться, мы сможем получить более точные оценки в некоторых конкретных случаях, особенно в легко формализуемых задачах типа пролёта астероидов и последствий ядерной войны). Похожими примерами шкал риска являются Туринская и Палермская шкалы риска астероидов.
В силу сказанного кажется естественным предложить следующую вероятностную классификацию глобальных рисков в XXI веке (рассматривается вероятность на протяжении всего XXI века при условии, что никакие другие риски на неё не влияют):
1) Неизбежные события. Оценка их вероятности - порядка 100 % в течение всего века. Интервал: (10%; 100%) (Иначе говоря, даже то, что нам кажется неизбежным, может быть просто весьма вероятным.)
2) Весьма вероятные события – оценка вероятности порядка 10 %. (1%; 100%)
3) Вероятные события – оценка порядка 1 %. (0,1%; 10%)
4) Маловероятные события – оценка 0,1 %. (0,01%; 1%)
5) События с ничтожной вероятностью – оценка 0,01 % и меньше. (0%; 0,1%)
Пунктами 4) и 5) мы могли бы пренебречь в нашем анализе, поскольку их суммарный вклад меньше, чем уровень ошибок в оценке первых трёх. Однако на самом деле ими пренебрегать не стоит, так как возможна значительная ошибка в оценке рисков. Далее, важно количество событий с малой вероятностью. Например, если возможно несколько десятков разных сценариев с вероятностью (0,1%; 10%), то всё это множество имеет твёрдый интервал (1%; 100%). К категории 1 относится только тот факт, что в течение XXI века мир существенно изменится.
Должна ли сумма вероятностей отдельных глобальных рисков не превышать 100%? Предположим, что мы отправляем в поездку неисправный автомобиль. Вероятность того, что он потерпит аварию из-за того, что у него проколота шина, равна 90%. Однако, предположим, что у него, помимо этого, неисправны тормоза, и если бы шины были исправны, то вероятность аварии от неисправности тормозов тоже бы составляла 90%. Из этого примера видно, что вероятность каждого глобального риска, вычисляемая в предположении (очевидно, ложном), что нет других глобальных рисков, действующих в то же самое время, не может просто складываться с вероятностями других глобальных рисков.
В нашем примере шансы машины доехать до конца пути равны 1%, а шансы, что причиной аварии стал каждый из двух рисков – 49,5%. Предположим, однако, что первые полпути дорога такова, что авария может произойти только из-за неисправных шин, а вторую – только из-за неисправных тормозов. В этом случае до конца доедет тоже только 1% машин, но распределение вкладов каждого риска будет иным: 90% машин разобьётся на первом участке дороги из-за шин, и только 9% на втором из-за неисправных тормозов. Этот пример показывает, что вопрос о вероятности того или иного вида глобальной катастрофы некорректен, пока не указаны точные условия.
В наших рассуждениях мы будем широко пользоваться Принципом предосторожности, то есть мы будем предполагать, что события могут сложиться наихудшим реалистичным образом. При этом под реалистичными мы будем считать следующие сценарии: а) не противоречащие законам физики б) возможные при условии, что наука и техника будут развиваться с теми же параметрами ускорения, что и в настоящий момент. Принцип предосторожности соответствует указанной Юдковски и проверенной на многих экспериментах закономерности, что результат, который люди получают относительно будущего, обычно оказывается хуже их самых худших ожиданий. При расширении вероятностных промежутков нам следует уделять внимание в первую очередь расширению в худшую сторону – то есть в сторону увеличения вероятности и уменьшения оставшегося времени. Однако если некий фактор, например создание защитной системы, может нам помочь, то оценки времени его появления следует увеличивать. Иначе говоря, консервативной оценкой времени появления домашних конструкторов биовирусов будет 5 лет, а времени появления лекарства от рака – 100. Хотя, скорее всего, то и другое появится через пару десятков лет.