Все остальные версии не могут объяснить затопления всех отсеков прочного корпуса ‹на лодке, в проекте которой нет грубых ошибок и отступлений от Требований ВМФ, построенной без существенных дефектов и поддерживаемой в технически исправном состоянии во время эксплуатации›.
Обратимся к рис. 7.
Рис. 7. АПЛ Пр. 949А в разрезе по продольной плоскости симметрии по публикации в еженедельнике “Аргументы и факты” № 34/2000 г. Максимальная длина изображенного объекта в натуре составляет 155 метров. Пропорции в публикации “АиФ” сохранены близкими к истинным. Но нумерация отсеков не соответствует отечественной кораблестроительной традиции, а общее расположение отличается от представленного на рис. 5 и рис. 6. Эти искажения, скорее всего, сделаны в целях дезинформации, прежде всего, отечественной досужей публики.
При взрыве даже всех (естественно, неядерных) торпед (самая большая трудность в этой версии, придумать причину взрыва) и аккумуляторных батарей, размещённых в торпедном отсеке, шестая по счёту (а согласно рис. 5 - девятая по счёту; согласно рис. 6 - восьмая по счёту) от эпицентра носовая переборка 9-го отсека, находящаяся примерно в 80 метрах от эпицентра такого взрыва, обязаны были уцелеть и сохранить герметичность[123]. Вследствие того, что взрывчатка в первом отсеке находилась в торпедах, а не была размазана в нём по внутренней поверхности прочного корпуса, первый отсек не мог сыграть роль генератора кумулятивной струи, направленной в корму и прожигающей всё на пути своего распространения. 9-й отсек должен был оставаться сухим при всех разрушениях в носовой части‹, будь они получены› как в результате внутренних взрывов, так и в результате столкновений с надводными кораблями, ударов о грунт из-за ошибок управления и т.п. Однако если был не только наружный взрыв в районе носовой оконечности, оставивший пробоину размером 2 ґ 3 метра[124] (“Московские ведомости” № 34 от 11.09.2000 г.) с загнутыми вовнутрь оплавленными краями, но и неконтактный взрыв противолодочного оружия в районе кормовой оконечности, то порождённая им ударная волна могла не оставить пробоин, но могла деформировать корпусные конструкции в корме и нарушить на протяжении нескольких десятков метров длины прочного корпуса герметичность вводов кабелей, трубопроводов, приводов ‹устройств, размещённых в межкорпусном пространстве›, швов обшивки, линий гребных валов и заклинить некоторые люки.
Геометрия пробоин, близкая к эллипсовидной, не соответствует версиям вариантов столкновения с надводными кораблями. При столкновении с судном ледокольного класса его литой или кованный форштевень способен продавить обшивку прочного корпуса (на отечественных атомоходах её толщина не менее 35 мм, а сталь по своим механическим характеристикам сопоставима с броневыми сталями), оставив в ней щелевидную пробоину в центре возможно глубокой вмятины. Скорость заполнения отсека через такую пробоину такова, что времени на пожар и термический взрыв торпед не будет.
При ударе в борт подводной лодки надводного корабля, не имеющего ледовых подкреплений, в первой фазе столкновения его корпусные конструкции, сваренные из листовой - не броневой (!!!) - стали с толщинами до 20 мм ‹(в подавляющем большинстве случаев до 10 мм)›, разрушив лёгкий корпус, будут смяты о прочный корпус ‹(сталь которого по своим механическим характеристикам сопоставима с броневой и достигает толщины до 40 мм)›. Во второй фазе столкновения, когда площадь соприкосновения корпусов станет достаточно большой (размер зоны соприкосновения определяется кинетической энергией, поглощаемой при столкновении разрушающимися конструкциями), и напряжения в конструкциях надводного корабля упадут и его конструкции перестанут разрушаться, начнётся деформация прочного корпуса подводной лодки. В результате на его поверхности может остаться вмятина (размеры которой могут быть сопоставимы с шириной “наехавшего” корабля), повторяющая форму соприкосновения корпусов кораблей, а в её пределах и в непосредственной близи от неё могут быть отрывы шпангоутов[125] от обшивки ‹прочного корпуса›, трещины в обшивке, разрывы сварных швов, разгерметизация вводов в прочный корпус кабелей и трубопроводов, оказавшихся в районе соприкосновения корпусов. При этом (в случае задраенных переборочных дверей в момент начала аварии) могут быть затапливаемы один либо два отсека в зависимости от расположения зоны повреждений прочного корпуса относительно водонепроницаемых переборок ‹в прочном корпусе›. Судьба лодки зависит от того, сумеет ли она всплыть в надводное положение и справиться с дальнейшим поступлением воды в затапливаемые отсеки. При незначительных скоростях поступления воды может возникнуть пожар, продолжительность которого может быть достаточной для термического взрыва торпед.
123
Для сопоставления глубина конструктивной противоторпедной защиты линкоров и авианосцев, представляющей собой пакет тянущихся вдоль борта продольных переборок, разделяющих пустые и частично заполненные камеры, составляет 8 - 10 метров. И на этом расстоянии их конструкции полностью поглощают и рассеивают энергию взрыва у борта одной тяжёлой противокорабельной торпеды или авиабомбы с массой боевого заряда в тротиловом эквиваленте до 600 - 700 кг (расчётные случаи для кануна второй мировой войны). В случае “Курска” имел место внутренний взрыв не одной торпеды, но и расстояние, разделяющее 1-й (торпедный) и 9-й отсеки, не 10 метров.
124
В разных публикациях приводятся разные размеры пробоины: 1,5ґ2 метра назвал В.В.Путин в своём интервью 8 сентября 2000 г. американскому телеобозревателю CNN Ларри Кингу во время встречи глав государств в ООН на саммите “Тысячелетие”.
125
При двухкорпусном архитектурно-конструктивном типе лодки прочный корпус находится внутри обтекаемого лёгкого корпуса, а шпангоуты прочного корпуса размещаются на наружной поверхности прочного корпуса в межкорпусном пространстве (2002 г.).