Выбрать главу

Но мутации могут происходить при делении любых клеток тела, а не только при образовании яйцеклеток и сперматозоидов. Такие мутации называются соматическими, от «сома» — тело. Они приводят к возникновению участков измененных тканей. Соматические мутации могут быть вызваны различными воздействиями внешней среды и в какой-то мере отражают эти воздействия, то есть несут некую информацию о них. Маловероятно, чтобы такого рода информация могла оказаться полезной следующим поколениям. Хотя возможно и такое, особенно если речь идет о контролируемых перестройках генома соматических клеток, о которых мы говорили в главе «Управляемые мутации». Тем не менее, если бы соматические мутации могли наследоваться, это вполне можно было бы назвать «наследованием приобретенных признаков», хоть и не совсем в том смысле, который вкладывал в это понятие Ламарк.

Классическая генетика отрицает возможность наследования соматических мутаций. Считается, что изменения клеток тела никак не могут отразиться на генах половых клеток. По-видимому, в большинстве случаев это утверждение справедливо. Но природа, сколько бы мы ее ни изучали, всегда остается неизмеримо сложнее любых наших теорий, моделей и прогнозов. И из всякого придуманного нами «закона» обязательно находятся исключения. В данном случае исключения тоже существуют.

Горизонтальный обмен генами

У одноклеточных организмов, понятное дело, нет разделения на соматические и половые клетки. Их единственная клетка является одновременно и половой, и соматической, и любые произошедшие в ней изменения генов беспрепятственно и неизбежно передаются потомкам. А гены у одноклеточных организмов изменяются довольно часто. И это не только мутации. У них очень широко распространен так называемый горизонтальный обмен генетическим материалом.

—————

Три способа горизонтального обмена генами у бактерий:

конъюгация: две бактерии соединяются при помощи специальных белковых трубочек — конъюгационных пилей, и бактерия-донор передает бактерии-реципиенту часть своего генома;

вирусная трансдукция: вирусы, переходя из одной бактерии в другую, могут прихватывать с собой куски бактериального генома;

естественная трансформация: иногда бактерия просто «всасывает» фрагменты ДНК из окружающей среды и при определенных условиях встраивает их в свой геном. Как мы помним из главы «Великий симбиоз», этот способ межвидового генетического обмена мог сыграть важную роль в становлении эукариотической клетки.

—————

Когда бактерия встраивает в свою единственную кольцевую хромосому кусочки чужого генома, она меняет свои свойства, то есть фактически превращается в другой организм. Новые свойства — «приобретенные признаки», — естественно, передаются потомству. В предельном случае возможна даже полная замена собственного генома бактерии чужим геномом. Если последний получен от другого вида бактерий, происходит нечто совершенно чудесное: бактериальная клетка в одночасье меняет свою видовую принадлежность. Микроб, относящийся к виду А, трансформируется в микроба вида Б. Самое удивительное, что это не чисто теоретические рассуждения, а экспериментально доказанный факт. Он был установлен в 2007 году исследователями из института Крейга Вентера (США).

—————

Первая в мире операция по пересадке генома позволила превратить один вид бактерий в другой. Ученые из Института Крейга Вентера в течение последних 10 лет уверенно идут к великой цели — созданию искусственных микроорганизмов с заданными свойствами. Практическое значение этих работ может оказаться огромным. Например, планируется создание микробов, которые будут в больших количествах производить дешевое топливо. Генеральная идея состоит в том, чтобы установить минимальный набор генов, необходимый для жизнеобеспечения бактерии, добавить туда гены, кодирующие полезные функции, например, синтез водорода, искусственно синтезировать спроектированный геном и внедрить его в живую бактерию. Ее собственный геном при этом должен быть каким-то образом удален.

Работы ведутся в основном с бактериями рода Mycoplasma.

—————

Микоплазмы — довольно обширная (около 180 видов) группа паразитических бактерий, вызывающих всевозможные болезни у растений, животных и человека. Микоплазмы обладают рядом уникальных свойств, которые делают их весьма удобным объектом для подобных исследований. Геномы микоплазм очень малы — от 600 до 1400 тыс. пар нуклеотидов — и хорошо изучены. На сегодняшний день полностью прочтены геномы 14 видов микоплазм. В отличие от подавляющего большинства других бактерий с маленькими геномами микоплазмы не являются облигатными внутриклеточными паразитами. Они могут жить вне хозяйских клеток, поэтому их можно выращивать обычным образом на питательной среде. Правда, среда должна быть весьма богатой: микоплазмы очень требовательны в этом отношении, поскольку у них отсутствуют гены, необходимые для синтеза многих жизненно важных веществ. Наконец, у микоплазм нет жесткой клеточной стенки, характерной для большинства бактерий. Клетки микоплазм окружены лишь тонкой и эластичной мембраной. Это сильно облегчает обмен наследственным материалом между клетками.