—————
Изучая геномы микоплазм, Крейг Вентер и его коллеги уже очень близко подошли к пониманию того, что должен представлять собой «минимальный геном» будущих искусственных микробов. Синтез искусственных фрагментов генома уже налажен, синтез целого бактериального генома — дело недалекого будущего. Биологи давно научились внедрять в бактерий отдельные фрагменты геномов. В этом ученым большую помощь оказывают имеющиеся у микробов естественные механизмы для обмена генетическим материалом. Однако до сих пор никому не удавалось пересадить целый геном в живую бактериальную клетку.
В июне 2007 года Крейг Вентер и его сотрудники сообщили о первой успешной трансплантации целого генома от одного вида бактерий другому. Правда, ученые пока сами не до конца понимают, как им это удалось и пройдет ли этот номер с другими видами бактерий. Сделано было следующее. Ученые выделили геном из бактерии Mycoplasma mycoides, которая вызывает пневмонию у коров. Геном этого микроба, как и у большинства бактерий, представляет собой одну кольцевую молекулу ДНК. Геном был тщательно очищен от посторонних примесей, в том числе от белков, и добавлен в культуру бактерий Mycoplasma capricolum, возбудителей козьего полиартрита. Предварительно в геном M. mycoides были внесены особые метки, в том числе гены устойчивости к антибиотикам. По этим меткам можно потом определить, успешно ли прошла трансплантация.
Спустя недолгое время среди клеток Mycoplasma capricolum появились бактерии с признаками Mycoplasma mycoides. Обработав культуру бактерий антибиотиком, ученые уничтожили тех микробов, которые не вобрали в себя чужую ДНК, а оставшихся подвергли тщательному изучению. По всем признакам это были самые настоящие M. mycoides. Ни генов, ни белков, характерных для исходного вида Mycoplasma capricolum, у них обнаружить не удалось. Антитела, избирательно реагирующие на поверхностные белки Mycoplasma capricolum, не прикреплялись к этим микробам, в отличие от антител, распознающих поверхностные белки Mycoplasma mycoides.
Все это свидетельствует о том, что пересадка генома полностью удалась. Авторы предполагают, что бактерии «проглатывали» чужую молекулу ДНК, и в первый момент в них, вероятно, содержались оба генома вместе. Когда такая клетка делилась, одна из дочерних клеток получала геном Mycoplasma capricolum, а другая — геном Mycoplasma mycoides. Последующая обработка антибиотиком уничтожила клетки первого типа.
Дальнейшие исследования покажут, можно ли проделывать подобную манипуляцию с другими бактериями и другими геномами. Не исключено, что вобрать в себя целый чужой геном способны только микробы, не имеющие клеточной стенки, — в этом случае микоплазмы, скорее всего, и впредь останутся единственными объектами для таких экспериментов. Так или иначе, проделанная работа сильно приблизила Крейга Вентера к его заветной цели — созданию искусственного микроба. По-видимому, эта цель может быть достигнута уже через несколько лет. Кстати сказать, в США сейчас активно дискутируются этические и юридические проблемы, связанные с близящимся созданием искусственных организмов. Самые горячие споры идут по вопросу о том, можно ли будет эти организмы патентовать.
(Источник: Lartigue C. et al. Genome Transplantation in Bacteria: Changing One Species to Another // Science. 2007. V. 317. P. 632–638.)
—————
У многоклеточных горизонтальный обмен генами между неродственными организмами играет гораздо меньшую роль. Вместо него развились более совершенные механизмы перемешивания и перекомбинирования наследственной информации, связанные с половым размножением. По сути дела это тот же самый горизонтальный обмен, но только замкнутый в пределах вида (разные особи смешивают свои гены в потомстве, но с представителями других видов обмен генами резко ограничен). К тому же половые железы у животных действительно ограждены от влияний внешней среды особым «вейсмановским» барьером, через который могут проникать только очень немногие вещества, в основном небольшие молекулы.