Итак, бделлоидные коловратки активно заимствуют гены у других живых существ. Как мы помним, горизонтальный генетический обмен очень широко распространен у прокариот (бактерий и архей) — он в определенном смысле «заменяет» им половое размножение. Значительно реже меняются генами одноклеточные эукариоты, у которых есть также и настоящий половой процесс (попарное слияние половых клеток). Для многоклеточных горизонтальный генетический обмен — очень большая редкость. Половое размножение, скорее всего, возникло как более безопасная и эффективная альтернатива горизонтальному генетическому обмену.
Животные стараются всячески оберегать свои половые клетки от проникновения постороннего генетического материала.
У бделлоидных коловраток барьеры, стоящие на пути проникновения чужой ДНК в яйцеклетки, очевидно, сильно ослаблены. Это может быть связано с необычным образом жизни этих микроскопических животных. Они живут в мелких лужах и отлично переносят высыхание на любой стадии жизненного цикла. Потом их, как пыль, может перенести ветром в другую лужу. Однако при высыхании мембраны клеток могут повреждаться, что облегчает проникновение чужеродной ДНК. При высыхании также образуются разрывы в хромосомах, которые клеткам приходится зашивать, когда коловратка снова размокнет. В ходе починки (репарации) разорванных хромосом имеется большая вероятность случайного включения в хромосому чужеродного фрагмента.
Ученые показали, что по крайней мере некоторые из заимствованных генов реально работают в клетках коловраток и кодируют функциональные белки. Большинство генов, заимствованных коловратками у бактерий, грибов и растений, кодируют ферменты, не входящие в состав сложных биохимических путей и каскадов, а выполняющие какую-то самостоятельную биохимическую функцию. Это и понятно, ведь именно такие гены могут оказаться полезными, если их заимствовать поодиночке. Впрочем, есть указания и на то, что иногда гены заимствовались сразу по два. Такие гены расположены в непосредственной близости друг от друга и в геноме бактерий-доноров, и в хромосоме коловратки-реципиента.
Авторы не делали попыток выяснить, обмениваются ли бделлоидные коловратки генами между собой. Это технически гораздо более трудная задача, чем обнаружение генетического обмена с бактериями и грибами. Однако едва ли коловратки, охотно заимствующие гены у микробов и растений, имеют при этом какую-то особую систему защиты от инкорпорации генетического материала близких родственников.
Если же бделлоидные коловратки хотя бы иногда меняются генами друг с другом, то получается, что они на самом деле не отказались от идеи межорганизменной генетической рекомбинации — перемешивания генов разных родителей в геноме потомства. Они просто вернулись от продвинутого варианта такой рекомбинации (полового процесса) к более примитивному варианту — горизонтальному обмену, который был свойствен их далеким одноклеточным предкам.
(Источник: Eugene A. Gladyshev, Matthew Meselson, Irina R. Arkhipova. Massive Horizontal Gene Transfer in Bdelloid Rotifers // Science. 2008. V. 320. P. 1210–1213.)
—————
Симбиоз способствует наследованию признаков «по Ламарку». Помимо горизонтального обмена генами есть еще один важнейший механизм, благодаря которому ветви эволюционного древа могут сливаться. Это образование симбиотических систем — «сверхорганизмов» (см. главу «Великий симбиоз»). У многих симбиотических организмов имеется интересная возможность передавать своим потомкам «приобретенные признаки» таким образом, что создается полное впечатление наследования «по Ламарку».
Рассмотрим, к примеру, тлей. В отечественной литературе можно встретить описания экспериментов, которые вроде бы подверждают «ламарковское» наследование у этих насекомых[94]. Например, приспособление к новому кормовому растению у тлей может происходить в ходе партеногенетического (бесполого) размножения, когда потомство развивается из неоплодотворенных яиц и является точной генетической копией матери. При половом размножении происходит перемешивание родительских генов и могут появиться новые удачные генетические комбинации, которые и будут подхвачены отбором. Но при бесполом размножении, казалось бы, можно рассчитывать только на возникновение новых полезных мутаций, а это все-таки вещь довольно редкая. Но тли тем не менее приспосабливаются к новой диете сравнительно быстро — всего за десяток поколений. Возможно, дело тут в том, что тли, как и все насекомые, питающиеся растительными соками, представляют собой симбиотические организмы. Как мы помним из главы «Великий симбиоз», в клетках тлей живут бактериальные симбионты, которые обеспечивают хозяина необходимыми питательными веществами, отсутствующими в растительном соке. За жизнь одного поколения тлей в их клетках могут смениться несколько поколений бактерий, причем симбионты, получая необычную пищу (сок другого растения) будут подвергаться интенсивному отбору. Бактерий много, размножаются они быстро, и вероятность возникновения удачных мутаций хотя бы у некоторых из них достаточно велика. В результате насекомое передаст своему потомству полезный «приобретенный признак» — бактерий-симбионтов с изменившимися наследственными свойствами.