Важную роль в фоторецепции у цветковых играет белок фитохром А, реагирующий на свет с длиной волны 700–750 нм («дальний красный»). Под действием света фитохром А переходит в биологически активную форму и транспортируется из цитоплазмы в ядро клетки, где он «включает» целый ряд генов, регулирующих цветение и созревание семян. Предполагается, что фитохром А был уже у последнего общего предка цветковых растений и что формирование эффективной светочувствительной регуляторной системы способствовало быстрой экспансии цветковых в меловом периоде.
Светозависимый транспорт фитохрома А в ядро осуществляется при помощи белков FHY1 и FHL. Кроме того, были идентифицированы еще два белка — FHY3 и FAR1, без которых транспорт фитохрома А в ядро нарушается, однако конкретная функция этих белков была до сих пор неизвестна. Именно эти два белка и привлекли внимание исследователей.
Анализ нуклеотидных последовательностей генов FHY3 и FAR1 показал чрезвычайно высокое сходство с генами транспозаз, входящими в состав транспозонов Mutator и Jittery. Оба эти транспозона широко распространены в геномах цветковых растений. Сходство генов FHY3 и FAR1 странспозазами оказалось настолько большим, что говорить о случайности не приходится — это, несомненно, гены «прирученных» транспозаз.
Оказалось, что белки FHY3 и FAR1 необходимы для активации генов FHY1 и FHL. «Прирученные транспозазы» регулируют активность обоих генов не поодиночке, а совместными усилиями. Они проникают в ядро и прикрепляются непосредственно к регуляторной области (промотору) генов FHY1 и FHL, что приводит к резкому росту активности этих генов. Таким образом, «прирученные транспозазы» FHY3 и FAR1 работают как самые настоящие транскрипционные факторы.
Кроме того, исследователи установили, что активность самих генов «прирученных транспозаз» подавляется фитохромом А, поступающим в ядро. В результате образуется контур отрицательной обратной связи, благодаря которому сигнальная система срабатывает при определенной освещенности и затем отключается, а не работает постоянно, как пожарная сирена, пока освещенность не изменится.
Но главное значение этой работы, конечно, в том, что впервые удалось продемонстрировать превращение «прирученных транспозаз» в полноценные транскрипционные факторы. Авторы предполагают, что приручение одного или нескольких транспозонов произошло вскоре после появления цветковых растений (примерно в середине мелового периода, около 100 млн лет назад) и было связано с освоением первыми цветковыми разных широтных зон, то есть местообитаний с разной сезонной динамикой освещенности.
(Источник: Rongcheng Lin, Lei Ding, Claudio Casola, Daniel R. Ripoll, Cédric Feschotte, Haiyang Wang. Transposase-Derived Transcription Factors Regulate Light Signaling in Arabidopsis // Science. 2007. V. 318. P. 1302–1305.)
—————
Данные, указывающие на важную эволюционную роль МГЭ, стали стремительно накапливаться в последние несколько лет. Стало ясно, что многие важные генетические инновации — прежде всего новые регуляторные участки ДНК, управляющие работой соседних генов, — сформировались из фрагментов «прирученных» МГЭ. Но до самого последнего времени не удавалось получить сколько-нибудь точных количественных оценок вклада МГЭ в эволюцию. Поэтому ученые не могли сказать определенно, как все-таки следует относиться к обнаруженным фактам приручения МГЭ — как к типичному и массовому явлению, магистральному направлению эволюции, или все-таки как к экзотике.
Короткохвостый опоссум Monodelphis domestica. Этот маленький южноамериканский зверек стал первым сумчатым млекопитающим, чей геном удалось прочесть. Вторым, скорее всего, будет кенгуру.
Для получения количественных оценок необходим комплексный сравнительный анализ целых геномов. Как известно, в последние годы мировое научное сообщество прилагает огромные усилия для того, чтобы определить нуклеотидные последовательности геномов как можно большего числа живых организмов — от бактерий до млекопитающих. И эти усилия начинают приносить плоды. Первые количественные подтверждения того, что формирование новых регуляторных участков ДНК из фрагментов МГЭ является правилом, а не исключением, были получены в результате прочтения генома маленького южноамериканского сумчатого зверька — серого короткохвостого опоссума.