Геном опоссума был прочтен в мае 2007 года[96]. Этот зверек был выбран для геномных исследований не случайно — он является важным лабораторным объектом, на котором изучают, в частности, регенерацию и формирование злокачественных опухолей. Кроме того, предполагали, что сравнение с геномом сумчатого животного поможет лучше понять прочтенные ранее геномы плацентарных — человека, шимпанзе, макака-резуса, собаки, мыши, крысы. Эти надежды полностью оправдались.
Различия в наборе белок-кодирующих генов между опоссумом и человеком оказались очень невелики. Подавляющее большинство генов опоссума имеют бесспорные человеческие аналоги и наоборот.
В целом в белок-кодирующих областях геномов сумчатых и плацентарных за 180 миллионов лет, прошедших после разделения этих линий, возникло сравнительно мало эволюционных инноваций. По современным представлениям, ведущую роль в эволюции высших организмов должны были играть изменения регуляторных участков генома, которые сами не кодируют белков, но влияют на работу белок-кодирующих генов. Геном опоссума блестяще подтвердил эту теорию.
Сравнительный анализ геномов опоссума, плацентарных и курицы показал, что в эволюции плацентарных подавляющее большинство эволюционных инноваций было связано с появлением новых участков ДНК, которые не кодируют белков, но выполняют важные регуляторные функции. Из всех функционально важных кодирующих участков генома плацентарных лишь около одного процента появились после отделения плацентарных от общего предка с сумчатыми. Что же касается функционально важных некодирующих (то есть регуляторных) последовательностей, то из их числа целых 20% оказались уникальными для плацентарных. Иными словами, скорость появления новых регуляторных участков генома в эволюции плацентарных была в 20 раз выше, чем скорость появления новых кодирующих участков.
У читателя может возникнуть резонный вопрос, почему мы говорим об эволюции плацентарных в связи с прочтением генома опоссума — зверька, относящегося не к плацентарным, а к сумчатым. Дело в том, что только сравнение с геномом опоссума позволило ученым установить, какие из некодирующих последовательностей геномов плацентарных являются новыми, то есть появившимися после разделения эволюционных линий сумчатых и плацентарных. Для того чтобы понять эволюционную роль изменений в некодирующих последовательностях, нужно еще знать, какие из этих последовательностей являются функционально важными, а какие нет. Для плацентарных это можно сделать, сравнивая между собой геномы разных видов: если некодирующий участок сходен, например, у человека и собаки, значит, он, скорее всего, является важным (отбор отбраковывал слишком сильные изменения в этом участке). Для сумчатых этого сделать пока нельзя, поскольку прочтен геном только одного вида сумчатых. Именно поэтому геном опоссума позволил гораздо больше узнать об эволюции плацентарных, чем сумчатых.
Как и следовало ожидать, особенно много новых регуляторных последовательностей у плацентарных появилось в окрестностях генов, кодирующих ключевые регуляторы индивидуального развития, в том числе Hox-генов (см. главу 5). Сами эти гены отличаются повышенной консервативностью — они очень похожи у плацентарных, опоссума и даже курицы. Получается, что изменения в строении организма у плацентарных млекопитающих были обусловлены в основном добавлением новых регуляторов к генам — регуляторам онтогенеза.
Самый яркий результат исследователи получили в ходе изучения происхождения новых регуляторных последовательностей, возникших в ходе эволюции плацентарных. В принципе, эти последовательности могут появляться тремя способами: 1. в результате изменения «до неузнаваемости» каких-то старых, предковых регуляторных последовательностей; 2. в результате дупликации старых регуляторных последовательностей и последующего накопления различий между копиями; 3. заново, из последовательностей, которые у предков были нефункциональными, в том числе из «прирученных» мобильных элементов.
Ранее было выявлено несколько случаев, когда в эволюции позвоночных новые регуляторные последовательности формировались из мобильных генетических элементов. Как мы уже знаем, сама структура МГЭ делает их превосходными «заготовками» для создания новых регуляторных элементов в хозяйском геноме. МГЭ обычно имеют свои собственные регуляторные элементы, например, места прикрепления транспозаз — ферментов, осуществляющих перемещения МГЭ. Эти регуляторные элементы легко могут быть адаптированы для регуляции работы генов хозяйского генома. Однако до сих пор оставалось неясным, являются ли выявленные случаи удачного приручения транспозонов редкими исключениями или общим правилом. Теперь наконец можно с уверенностью сказать: это правило.
96
T. S. Mikkelsen et al.