—————
Более того, совершенно ясно, что передача информации от родителей к потомкам при помощи РНК является, возможно, необходимым, но явно не достаточным условием парамутации. Это хорошо видно из результатов исследования парамутаций у кукурузы — растения, у которого данный феномен активно изучается уже полвека.
Классический пример парамутации у кукурузы дает ген pl1, от которого зависит окраска пыльников, то есть той части тычинки, в которой образуется пыльца. Этот ген при одной и той же последовательности нуклеотидов может находиться в одном из двух состояний: «активном» (в этом случае пыльники получаются пурпурные) и «неактивном» (светлые пыльники). Фокус состоит в том, что неактивное состояние гена является как бы «заразным», то есть активный ген pl1, побывав в одной клетке со своим неактивным «собратом», сам становится неактивным.
Согласно законам генетики при скрещивании двух гетерозиготных растений (то есть таких, у которых одна копия гена активна, а вторая нет) четверть потомков должна иметь пурпурные пыльники. Однако этого не происходит, у всех потомков пыльники оказываются светлыми, и в последующих поколениях пурпурная окраска пыльников тоже не появляется. Это происходит потому, что активный ген, побывав в гетерозиготном состоянии с неактивным, меняет свои свойства и переходит в неактивное состояние. В таком неактивном виде он затем передается по наследству. Это и есть парамутация.
Мы уже знаем, что большую роль в поддержании «переключенного» состояния гена при парамутации играют молекулы РНК, передающиеся от родителей к потомкам. Кроме того, в опытах с кукурузой недавно удалось показать, что для устойчивой передачи парамутации из поколения в поколение необходим фермент, размножающий молекулы РНК (РНК-зависимая РНК-полимераза, см. главу «Происхождение жизни»). И еще было установлено, что многие другие гены тоже участвуют в поддержании устойчивости парамутантного состояния, но в чем конкретно состоит функция этих генов, никто до недавнего времени не знал.
В отличие от «настоящей» мутации парамутация у кукурузы может сравнительно легко ревертироваться, то есть вернуться в исходное состояние. Например, неактивная версия гена pl1 может превратиться обратно в активную, если произойдут определенные мутации (настоящие, а не «пара-») в других генах.
У кукурузы удалось выявить 10 генов, мутации в которых могут приводить к возвращению неактивного гена pl1 в активное состояние. Это значит, что нормальная работа этих генов необходима для поддержания парамутантного состояния. Чтобы понять механизм парамутации, очень важно выяснить, что это за гены и что они кодируют. До недавнего времени была известна функция только одного из них — было показано, что он кодирует РНК-зависимую РНК-полимеразу (см. выше).
В 2007 году американские генетики предприняли очередную попытку разгадать тайну парамутаций у кукурузы. И ответ, казалось, был уже почти у них в руках. Еще бы одно маленькое усилие, и… В общем, история получилась вполне детективная[101].
Исследователи сосредоточили свое внимание на одном из вышеупомянутых десяти генов, необходимых для парамутации. Этот ген называется rmr1, и до сих пор никто понятия не имел, как он работает и что кодирует. Оказалось, что он кодирует не известный ранее белок, похожий по своей структуре на ферменты, управляющие метилированием ДНК. Это позволило предположить, что поддержание «парамутантного» состояния как-то связано с метилированием ДНК. Заодно наметилась и связь с РНК-зависимой РНК-полимеразой, которая тоже нужна для парамутации, как было показано ранее. Дело в том, что РНК-зависимая РНК-полимераза размножает маленькие молекулы РНК, которые тоже участвуют в регуляции метилирования ДНК.
101
Christopher J. Hale, Jennifer L. Stonaker, Stephen M. Gross, Jay B. Hollick.