Одним из явных отголосков эпохи РНК-мира являются недавно открытые удивительные структуры, получившие название РНК-переключателей.
РНК-переключатели впервые были обнаружены в 2002 году Рональдом Брейкером и его коллегами из Йельского университета. С тех пор число публикаций, посвященных этому странному и очень древнему механизму генной регуляции, стремительно растет.
Работа гена начинается с транскрипции — создания молекулы мРНК на матрице ДНК. Транскрибируется не только та часть ДНК, которая кодирует белок, но и кое-что «лишнее», в том числе участок перед началом кодирующей области. Здесь-то и располагаются РНК-переключатели. Они представляют собой последовательности нуклеотидов, которые сразу после транскрипции сворачиваются в замысловатые трехмерные структуры. Сворачивание осуществляется на основе принципа комплементарности (так же, как это происходит, например, с транспортными и рибосомными РНК). Самое важное, что область, где находятся РНК-переключатели, транскрибируется первой. РНК-переключатели приходят в рабочее состояние — то есть принимают нужную конфигурацию — сразу, как только их транскрибировали, и задолго до того, как закончится транскрипция всего гена. Это позволяет им прервать транскрипцию и тем самым фактически выключить ген.
РНК-переключатель состоит из двух функциональных частей. Первая часть представляет собой весьма избирательный и чувствительный рецептор, который способен связываться с одной строго определенной молекулой (например, с аминокислотой глицином или с S-аденозилметионином). Вторая часть устройства — это собственно переключатель. Когда рецептор связывается со «своей» молекулой, переключатель меняет свою пространственную конфигурацию, что и приводит к изменению активности гена. Например, переключатель может образовать «шпильку» — торчащий двухнитевой участок, который блокирует дальнейшую транскрипцию и на котором недоделанная информационная РНК просто-напросто обрывается.
Ключевой молекулой, которая приводит в действие РНК-переключатель, часто является вещество, производимое белком, ген которого этим переключателем регулируется. Например, если продуктом гена является белок, синтезирующий вещество А, то РНК-переключатель этого гена с большой вероятностью будет реагировать именно на вещество А. Таким образом формируется отрицательная обратная связь: когда какого-то продукта становится слишком много, производство белка, синтезирующего этот продукт, приостанавливается.
РНК-переключатели широко распространены во всех трех надцарствах живой природы — у бактерий, архей и эукариот. Наиболее разнообразны они у бактерий. Поскольку открыты они были всего несколько лет назад, неудивительно, что почти каждый месяц мы узнаем о них что-то новое. Сначала думали, что все РНК-переключатели снижают активность генов, но вскоре среди них были открыты и активаторы. Думали, что регуляторные контуры с участием РНК-переключателей всегда просты: один ген — один переключатель — одно сигнальное вещество. Однако в 2006 году в журнале Science появилась статья группы американских исследователей во главе с Брейкером, в которой описан новый тип регуляторного РНК-устройства, состоящего из двух разных РНК-переключателей[20]. Ученые установили, что комплекс из двух переключателей работает как логический элемент NOR (ИЛИ-НЕ). Иными словами, ген выключается, если оба или хотя бы один из двух переключателей свяжется со своей молекулой.
Открытие показало, что возможности безбелковой РНК-регуляции активности генов далеко не так ограниченны, как думали раньше. На основе простых РНК-переключателей могут создаваться более сложные регуляторные устройства, способные учитывать сразу несколько параметров окружающей среды.
Уже первооткрывателям РНК-переключателей сразу стало ясно, что они столкнулись с чем-то чрезвычайно древним.
Человек, обладающий хорошим воображением, может представить себе эту картину в красках — «считываемый» ген вдруг начинает шевелиться, воспринимать сигналы из окружающей среды, реагировать на них и вмешиваться в работу считывающего устройства: не читай меня больше! Таким образом, становится понятно, как далеки от истины были исходные представления об РНК как о безынициативном посреднике между ДНК и машиной синтеза белка.
В начале было сообщество?
Многие биологи полагают, что все разнообразие жизни на нашей планете происходит от единственного исходного вида — «универсального предка» по имени Лука (об этом прародителе всего живого на Земле мы уже упомянули в начале главы). Другие, в том числе крупнейший микробиолог академик Г. А. Заварзин, с этим не согласны. Они исходят из того, что устойчивое существование биосферы возможно только при условии относительной замкнутости биогеохимических циклов — в противном случае живые существа очень быстро израсходуют все ресурсы или отравят себя продуктами собственной жизнедеятельности.
20
Narasimhan Sudarsan, Ming C. Hammond, Kirsten F. Block, Rudiger Welz, Jeffrey E. Barrick, Adam Roth, Ronald R. Breaker.