Модель «молодого» Солнца
Представим себе, что у нас есть достаточно большая вычислительная машина и программа, которая моделирует внутреннее строение звезды. Мы хотим с их помощью построить модель звезды. Прежде всего необходимо задать химический состав звездного вещества. Выберем для начала смесь химических элементов, состав которой характерен для Солнца и большинства других звезд. Предположим, таким образом, что килограмм звездного вещества содержит около 700 граммов водорода и 270 граммов гелия. В остальных 30 граммах содержатся более тяжелые элементы, прежде всего углерод и кислород. Затем вычислительная машина должна будет определить свойства звездного вещества данного состава, и прежде всего его прозрачность. Теперь нужно определить еще количество вещества, которое содержится в нашей модельной звезде. Пусть масса этой звезды будет близка к массе Солнца. Тогда машина рассчитает параметры модели звезды с помощью заложенных в программу законов природы и известных свойств звездного вещества. В настоящее время вычислительные машины работают так быстро, что решение подобной задачи занимает меньше минуты. Модель звезды, в которую мы заложили данные для Солнца, получается немного меньше нашего Солнца: ее диаметр составляет около 92 % диаметра Солнца, она излучает несколько меньше энергии, чем мы ожидали. Ее светимость составляет лишь 75 % светимости настоящего Солнца. Температура поверхности близка к 5620 градусам, что на 180 градусов ниже реальной температуры солнечной поверхности. Однако мы не будем вначале обращать внимания на эти небольшие различия и рассмотрим более подробно звезду, которая получилась в нашей модели. Эта звезда лежит на диаграмме Г-Р на главной последовательности, немного ниже настоящего Солнца.
На рис. 4.2, а показано внутреннее строение Солнца, полученное в нашей модели. [9] В подписи к рисунку подробно объясняются обозначения. С этими обозначениями мы еще не раз встретимся в нашей книге.
Рис. 4.2. Внутреннее строение звезд разной массы, полученное с помощью компьютерной модели. Масса выражается в единицах массы Солнца М. Звезды в левой части рисунка (а, б, г) показаны в одинаковом масштабе. В этом же масштабе изображена и звезда на рис. в. Чтобы лучше показать внутреннее строение звезд, на рис. а и г изображения увеличены еще в 10 раз. На рис. б в 10 раз увеличена только внутренняя область, показанная на левом рисунке белым цветом. На трех плоскостях, образующих вырез, показан химический состав (внизу), выделение энергии (слева вверху) и характер переноса энергии (справа вверху). Точками на нижней плоскости показаны области с исходным химическим составом. Все изображенные на рисунке звезды образованы из исходной богатой водородом газовой смеси. Светлые области на левой верхней плоскости разреза показывают, где происходит выделение энергии за счет ядерной реакции. Волнистыми стрелками в правом верхнем секторе каждого рисунка обозначены области, где происходит перенос энергии с помощью излучения. «Облака» изображают области, где происходит конвективный перенос энергии из внутренних областей звезды к поверхности.
В центре звезды плотность вещества в нашей модели составляет около 100 граммов на один кубический сантиметр. Эта величина примерно в 13 раз выше плотности железа. Давление составляет 130 миллиардов атмосфер. Температура центральной области близка к 10 миллионам градусов. При этой температуре протекают ядерные реакции. Ядерная энергия выделяется в результате реакций протон-протонной цепочки! Таким образом, мы получили звезду, светимость которой объясняется превращением водорода в гелий! Энергия из внутренних областей звезды переносится наружу с помощью излучения. Однако во внешних слоях этот механизм переноса энергии работает недостаточно эффективно. Там энергия передается к поверхности с помощью конвекции. Массы газа поднимаются вверх и вновь опускаются вниз, точно как на поверхности Солнца, где эти потоки образуют так называемую грануляцию.
Сформулируем основные выводы. Мы взяли вещество с составом, близким к солнечному, и такой же массой и построили из него звезду, В результате получился объект, который находится на главной последовательности диаграммы Г-Р, в объеме которого водород превращается в гелий, во внешних слоях происходит конвективный перенос тепла, как на Солнце, а основные свойства этого объекта очень близки к свойствам Солнца.
Но почему же нам не удалось в точности повторить свойства Солнца, в чем кроется причина различий? Может быть что-то неправильно в нашей программе? Далее мы увидим, что отличие модельного Солнца от реального связано с тем, что в нашей модели мы предположили: состав солнечного вещества постоянен во всех точках. Однако настоящее Солнце светит уже более трех миллиардов лет. За это время в центральных областях Солнца накопился гелий, который образовался в результате ядерных реакций. Это обстоятельство мы не учли в нашей программе. Мы построили такое Солнце, в котором химический состав центральных областей не отличается от состава внешних слоев. Таким образом, мы построили Солнце, в котором реакция ядерного горения водорода только что началась — Солнце в самом начале его жизни. Следовательно, мы построили «молодое Солнце».[10] Прежде чем увидеть, как молодое Солнце превращается в Солнце наших дней, мы проведем численные эксперименты со звездами одинакового состава, но разной массы.
Численная модель позволяет построить «молодую» главную последовательность
Вновь возьмем вещество с химическим составом, характерным для Солнца. Зададим теперь нашему компьютеру, который только что построил модель Солнца, величину массы, которая в два раза превышает солнечную! Менее чем через минуту машина напечатает нам величины, описывающие новую звезду. Звезда, которая получается в результате расчета, тоже существует за счет превращения водорода в гелий. С помощью такого метода мы можем получить модели для целого ряда звезд различной массы. Что мы обнаружим? Все эти звезды существуют за счет превращения водорода в гелий. Если звезды с массой, равной солнечной, и более «легкие» звезды получают энергию за счет реакций последовательного присоединения протонов, то в «тяжелых» звездах водород превращается в гелий в реакциях углеродного цикла.
Вычислительная машина определяет нам в каждом случае светимость и температуру поверхности звезды. Поэтому мы, пользуясь нашими моделями, можем нанести на диаграмму Г-Р значения светимости и температуры поверхности для звезд разной массы, существующих за счет сжигания водорода (рис. 4.3). При этом мы увидим, что все эти звезды лежат на одной линии, которая опускается слева направо. Наиболее массивные звезды расположены наверху, более легкие — внизу. Таким образом мы снова получили главную последовательность, но на этот раз не из наблюдений звездного неба. Мы обнаружили эту последовательность на распечатках компьютера, которые описывают звезды разной массы, существующие за счет сжигания водорода. Раньше мы могли только предполагать, зная продолжительность жизни Солнца и других звезд главной последовательности, что их излучение объясняется сжиганием водорода, теперь же это предположение обрело силу уверенности. Главная последовательность — это такое место на диаграмме Г-Р, где располагаются звезды, существующие за счет ядерной энергии превращения водорода в гелий!
Рис. 4.3. Точками показаны данные для звезд с разной массой, полученные с помощью компьютерной модели. Все звезды состоят из богатой водородом смеси одинакового состава. На диаграмме Г-Р они образуют главную последовательность со всеми свойствами наблюдаемой главной последовательности. Массы звезд выражены в единицах массы Солнца М. Видно, что светимость звезд главной последовательности резко падает с уменьшением массы.