Выбрать главу

На рис. 5.4 изображена диаграмма Г-Р для звезд главной последовательности шарового скопления МЗ. На этой диаграмме черной стрелкой изображен путь развития звезд, подобных Солнцу. Из рис. 5.4 хорошо видно, что звезды шарового скопления развиваются так же, как будет развиваться Солнце в будущем. На диаграмме показаны звезды, которые уже перемещаются по диаграмме направо вверх. Такая судьба постигнет и Солнце через 8 миллиардов лет. Более тяжелые звезды опережают Солнце, они уже сегодня показывают нам, что ожидает в будущем наше Солнце. И если на некоторых планетах, образующихся вокруг этих звезд, когда-то была жизнь, то теперь эта жизнь там уже не существует, и все ее следы давно сгорели в потоке тепла, который испускают эти звезды. Таким образом, астрономические наблюдения подтверждают, что наши предсказания дальнейшей судьбы Солнца, к сожалению, правильны.

Рис. 5.4. Диаграмма Г-Р звезд из шарового скопления МЗ, которая уже была приведена на рис. 2.9. На этом рисунке нанесен путь развития звезд главной последовательности (черная стрелка), который показывает, как звезды главной последовательности перемещаются в область красных гигантов. Массы звезд, покидающих главную последовательность, несколько отличаются от предсказанных (звезды с массами, равными солнечной, все еще находятся на главной последовательности). Химический состав звезд шарового скопления отличается от модельного. Кроме того, общая интенсивность излучения не совпадает с интенсивностью излучения в видимой области спектра, которая приведена на этом рисунке. Поэтому путь развития, показанный черной стрелкой, не удается количественно сопоставить с приведенным на рис. 5.1. Однако качественный вывод остается справедливым: большие звезды в этом шаровом скоплении находятся на стадии развития, в которую еще не вступило наше Солнце.

Нейтрино, образующиеся на Солнце

Мы сравнили полученные нами результаты моделирования с наблюдаемыми свойствами звезд. Диаграмма Г-Р звезд из шарового скопления показала нам, что наша модель правильно предсказывает будущее развитие Солнца, хотя оно и не слишком приятно для человечества. С точки зрения астрофизика наступил полный порядок. Однако осталось одно небольшое несоответствие, которое позволяет специалисту в области ядерной физики утверждать, что, может быть, далеко не все правильно в наших представлениях о жизни и развитии звезд и что наша компьютерная модель может быть полностью неверна.

Причиной для такого сомнения служат практически ненаблюдаемые элементарные частицы, которые возникают при превращении водорода в гелий и почти никак не влияют на процессы, происходящие на Солнце. Это сомнение возникло в результате эксперимента, который был проведен в заброшенной шахте по добыче золота в штате Южная Дакота (США).

Этой частицей является нейтрино. Оно не имеет электрического заряда и практически лишено массы. Нейтрино перемещается со скоростью света. При описании протон-протонной цепочки реакций мы видели, что всякий раз, когда сливаются два ядра водорода, возникают позитрон и нейтрино (см. верхнюю схему на рис. 3.3). Позитрон очень быстро аннигилирует с электроном, в результате чего возникает квант света. Другая судьба у нейтрино. Нейтрино не реагирует с другими элементарными частицами и улетает из места своего возникновения по прямолинейной траектории, нигде не отклоняясь. Окружающее солнечное вещество никак не влияет на нейтрино. Для возникшей новой частицы солнечное вещество как бы не существует. Чтобы полностью защититься от прилетающих к нам нейтрино, потребовалось бы воздвигнуть стену, толщина которой, выраженная в километрах, составляет пятнадцатизначное число. К счастью, от нейтрино не нужно защищаться, поскольку они пролетают сквозь нас, не взаимодействуя ни с одним атомом нашего тела.

Таким образом, нейтрино, возникшие в центре Солнца, улетают по прямолинейным траекториям в пространство и некоторые из них могут достичь поверхности Земли. Для этих частиц не имеет значения, ночь или день стоит в это время на Земле. Днем они прилетают сверху, а ночью — снизу, свободно пронзая земной шар. Если бы у нас был нейтринный телескоп, то с его помощью мы могли бы увидеть в центре Солнца маленькое яркое пятно. Это — область, в которой происходят ядерные реакции водородного цикла и где возникают нейтрино. С помощью такого телескопа мы могли бы увидеть это яркое пятно и ночью, после захода Солнца. Нужно было бы только направить наш телескоп не на небо, а вниз, к Земле, вслед за суточным движением Солнца, так как Земля прозрачна для нейтринного излучения.

Но, к сожалению, нейтринного телескопа не существует, поскольку, чтобы его построить, нужно уметь отклонять нейтрино от прямолинейного пути с помощью линз или зеркал, как отклоняют свет в фотоаппарате или электроны в электронном микроскопе. Но нейтрино всегда летят прямолинейно.

К счастью, существуют изотопы, с помощью которых можно устроить хотя и очень небольшое, но заметное препятствие для нейтрино. Наиболее известным из них является изотоп элемента хлора Сl37. Если атомы вообще могут останавливать нейтрино, то легче всего это сделать с помощью изотопа Сl37. В тех редких случаях, когда нейтрино сталкивается с ядром атома хлора, это ядро испускает электрон и возникает атомное ядро элемента аргона (рис. 5.5). В результате реакции возникает не обычный атом этого благородного газа, а изотоп, который распадается приблизительно через 35 дней. На этой реакции основана идея известного эксперимента Раймонда Девиса по изучению солнечных нейтрино.[13] Этот эксперимент известен главным образом тем, что он поставил перед астрофизиками чрезвычайно затруднительные вопросы. Но прежде чем рассказать о нем, мы обсудим еще некоторые трудности.

Рис. 5.5. Нейтрино может привести к превращению атома хлора в атом аргона. При этом освобождается электрон.

С атомами хлора могут взаимодействовать только нейтрино высоких энергий. Нейтрино, которые возникают в реакциях протон-протонной цепочки, обладают слишком низкой энергией. Они не могут взаимодействовать с атомами хлора. Позволяют ли нам наши представления о строении звезд найти на Солнце источник нейтрино с высокими энергиями? Оказывается, что наряду с протон-протонной цепочкой происходят другие, сопутствующие ядерные реакции. Эти реакции не вносят практически никакого вклада в выделение энергии на Солнце, и поэтому мы их пока не рассматривали. Среди этих реакций есть одна, которая происходит тем чаще, чем больше гелия образовалось в недрах звезды. Она схематически показана на рис. 5.6. Нормальный атом гелия с массовым числом 4 сталкивается с ядром изотопа гелия с массовым числом 3. При этом возникает бериллий с массовым числом 7. Если с этим атомом до того, как он самопроизвольно распадется, столкнется протон, то возникнет изотоп бора с массовым числом 8. Такие атомы бора тоже радиоактивны, и они через некоторое время снова превращаются в атомы бериллия. Но в результате такого превращения образуются позитрон и нейтрино с высокой энергией.

Рис. 5.6. В побочной цепи реакций, протекающих наряду с реакциями водородного цикла (см. рис. 3.3), возникает радиоактивный изотоп бериллия Be8, который испускает позитрон и нейтрино высокой энергии. Красными волнистыми стрелками обозначено испускание квантов света.