Выбрать главу

В это время в нашем Институте физики им. Макса Планка уже работал астроном Альфред Вайгерт. Он вместе с юной специалисткой по вычислительной математике Эмми Хофмейстер был готов начать расчеты с помощью метода Хенея. Вычислительные возможности бывшего астрофизического отделения Института физики, которое к тому времени превратилось в отдельный институт астрофизики, существенно расширились, и поэтому путь был открыт. Мы хотели довести тяжелую звезду из главной последовательности до стадии красного гиганта. Прежние методы расчета не позволяли при работе с большими звездами даже выйти за пределы главной последовательности.

В марте 1963 г. наша звезда мы выбрали для нее массу в 7 раз больше массы Солнца не только покинула главную последовательность, но и переместилась в область красных сверхгигантов, где в ее недрах началась ядерная реакция превращения гелия в углерод. Мы послали телеграмму в Беркли: «Метод Хенея начал работать в Мюнхене. Спасибо!»

С этого момента началась история звезды с массой в 7 раз больше солнечной.

История звезды с массой в 7 раз больше солнечной

Почему мы взяли такое значение массы? Мы выбрали для расчетов звезду такого размера, поскольку надеялись, что на одной из поздних стадий своего развития такая звезда пройдет через область, в которой существуют переменные звезды определенного типа: так называемые цефеиды. К тому времени еще никому не удавалось понять, как обычная звезда из главной последовательности в ходе своего развития превращается в переменную звезду типа Дельты Цефея. Теперь же, обладая мощным методом Хенея, мы получили надежду достичь этой цели. И действительно оказалось, что наша звезда во время своего развития даже несколько раз проходит через область существования переменных звезд. Однако мы немного забежали вперед. Прежде всего я должен по порядку рассказать, что происходит со звездой с массой в 7 раз больше солнечной.

Мы начали со стадии, когда наша звезда находилась в пределах главной последовательности. На этой стадии недра звезды состоят из вещества, богатого водородом, а все ее свойства совпадают со свойствами других звезд главной последовательности. Дальнейшая история такой звезды схематически показана на рис. 6.1 и 6.2. На рис. 6.1 представлено внутреннее строение на различных стадиях развития звезды. Первоначально химический состав этой звезды был одинаковым во всем ее объеме (рис. 6.1, а). Путь развития показан также на диаграмме Г-Р (рис. 6.2). На этой же диаграмме изображены пути развития звезд с другой массой. Путь развития нашей звезды начинается на главной последовательности и идет, как и ожидалось, в область красных сверхгигантов. Мы уже видели, что запасов водорода тяжелым звездам хватает ненадолго. Данные, приведенные на рис. 2.11, позволяют грубо оценить, что звезда с массой в 7 раз больше солнечной может существовать за счет своих запасов водорода многие десятки миллионов лет. На протяжении этого времени конвективное ядро такой звезды постоянно обогащается гелием. При этом общее внутреннее строение звезды изменяется незначительно. Ее радиус становится немного больше, температура поверхности сначала понижается, а затем снова увеличивается, в то время как светимость постоянно немного растет. В соответствии с этим звезда медленно перемещается по диаграмме Г-Р (см. рис. 6.2) вначале направо, а затем снова налево. Все это время звезда находится в пределах полосы, где расположены другие звезды главной последовательности. Только спустя примерно 26 миллионов лет после начала горения водорода в недрах звезды начинает исчерпываться запас «ядерного топлива». Тогда внутреннее строение такой звезды существенно изменяется. Приток энергии из центральных областей уже не позволяет поддерживать прежнюю светимость. Поэтому начинается ядерное горение водорода в слоях, которые расположены ближе к поверхности. Область, где теперь идет горение водорода, образует сферическую оболочку вокруг «выгоревшего» ядра. Эта стадия развития напоминает соответствующий этап в развитии Солнца (см. рис. 6.1, б). Над тонким сферическим слоем находится богатое водородом вещество исходного состава, а под ним-область, состоящая главным образом из гелия. Теперь звезда состоит из гелиевого ядра, на поверхности которого продолжается ядерная реакция превращения водорода в гелий.

Рис. 6.1. Внутреннее строение звезды с массой в 7 раз больше солнечной на разных стадиях ее развития. Звезды в левой части рисунка изображены в одинаковом масштабе. Правее показано строение внутренней части звезд. Эти рисунки увеличены. На рис. г и е внутренние области увеличены дважды. Обозначения такие же, как и на рис. 4.2 и 5.2. При ядерном горении гелия возникает углерод. Слой, обогащенный углеродом, показан малыми черными кружками, а — молодая звезда, находящаяся на главной последовательности. Внутренняя часть звезды занята конвективным слоем; б — та же звезда через 26 миллионов лет. Диаметр звезды практически не изменился, однако во внутренней области уже начался переход к горению в сферическом слое. Это показано на левой верхней плоскости схематического разреза; в — 26,5 миллионов лет спустя после начала горения водорода в центре звезды образуется область, обогащенная гелием. Горение водорода идет только в тонком сферическом слое. Радиус звезды резко возрос. В звезде возник толстый внешний конвективный слой, который хорошо виден на правой верхней плоскости разреза в левой части рисунка; г — внутреннее строение звезды через 100000 лет после начала ядерной реакции превращения гелия в углерод. Теперь в звезде идет горение гелия в центре и горение водорода во внешнем сферическом слое. Радиус звезды стал еще больше; д — через 34 миллиона лет после начала горения водорода в центре звезды исчерпывается запас гелия. Теперь ядерное горение происходит в двух сферических слоях: во внешнем водород превращается в гелий, а во внутреннем гелий превращается в углерод. Звезда стала существенно меньше и потеряла свою внешнюю конвективную зону; е — еще через 2 миллиона лет звезда вновь становится красным сверхгигантом. В ней больше нет слоя, где происходит горение водорода. Теперь звезда существует только за счет ядерной реакции превращения гелия в углерод. Ее химический состав сильно усложнился. Во внешнем слое по-прежнему существует исходное, богатое водородом вещество, ниже лежит толстый слой гелия, который окружает центральную область, состоящую из углерода.

Рис. 6.2. Пути развития звезд с различными массами (возле траекторий указаны величины их масс в единицах массы Солнца). Если путь развития звезды с массой, равной солнечной, ведет ее в область красных гигантов (см. также рис. 5.1), то более тяжелые звезды приходят в область красных сверхгигантов. Траектория развития звезды с массой в 7 раз больше солнечной показана красным цветом. На этой траектории буквами отмечены точки, для которых на рис. 6.1 показана внутренняя структура этой звезды. Параллельные штриховые линии ограничивают на диаграмме область существования цефеид.

Дальнейшее развитие идет очень быстро. Гелиевое ядро под сферическим слоем, в котором идет ядерная реакция, сжимается и разогревается, в то время как внешние слои звезды разрежаются и становятся все холоднее. Температура поверхности резко падает, тогда как светимость остается практически прежней. При этом звезда перемещается на диаграмме Г-Р по горизонтали направо. Она становится красным сверхгигантом (см. рис. 6.1, в и 6.2). Этот переход происходит всего за 500 000 лет. За это относительно короткое время звезда пересекает слева направо всю диаграмму Г-Р.