Рис. 12.2. Модель образования Солнца по Ларсону. Облако межзвездной пыли начинает сжиматься (а). Вначале плотность внутри него почти везде одинакова. Через 390000 лет в центре облака плотность увеличивается в 100 раз (б). Через 423000 лет после начала процесса в центре уплотнения появляется горячее ядро, которое поначалу перестает сжиматься (в). На рисунке оно показано в увеличенном масштабе. Его плотность в 10 миллионов раз выше первоначальной. Основная доля массы, однако, как и раньше, приходится на окружающее его сжимающееся облако. Через короткое время молекулы водорода в ядре распадаются на атомы, ядро снова сжимается и образуется новое ядро, которое имеет размеры Солнца (на рисунке увеличено вдвое) (г). Хотя вначале его масса невелика, в конце концов все вещество облака переходит к нему. Ядро в центре разогревается до такой степени, что начинается термоядерная реакция водорода и оно становится звездой главной последовательности с массой, равной солнечной.
Так продолжается, пока температура не достигнет примерно 2000 градусов. При этой температуре молекулы водорода начинают распадаться на отдельные атомы. Этот процесс имеет для ядра важные последствия. Ядро вновь начинает сжиматься и сжимается до тех пор, пока выделяющаяся при этом энергия не превратит все молекулы водорода в отдельные атомы. Новое ядро лишь немногим больше нашего Солнца. На это ядро падают остатки окружающего вещества, и из него в конечном счете образуется звезда с массой, равной солнечной. С этого момента интерес представляет в основном только это ядро.
Поскольку этому ядру предстоит в конце концов превратиться в звезду, его называют протозвездой. Его излучение поглощается падающим на него веществом; плотность и температура растут, атомы теряют свои электронные оболочки — как говорят, атомы ионизуются. Снаружи пока удается увидеть не так уж много. Протозвезда окружена плотной оболочкой из падающих на нее газовых и пылевых масс, не пропускающей наружу видимое излучение; она освещает эту оболочку изнутри. Только когда основная часть массы оболочки упадет на ядро, оболочка станет прозрачной и мы увидим свет звезды. Пока остатки оболочки падают на ядро, оно сжимается, и температура в его недрах вследствие этого повышается. Когда температура в центре достигнет 10 миллионов градусов, начинается термоядерное горение водорода. Коллапсирующее облако, масса которого равна массе Солнца, становится совершенно нормальной звездой главной последовательности это, так сказать, пра-Солнце (молодое Солнце), дальнейшая история которого описана в начале этой книги.
К концу стадии протозвезды, еще до того, как звезда выйдет на главную последовательность, в ее глубинах происходит конвекционный перенос энергии в более обширные области. Происходит активное перемешивание солнечного вещества. Это дает ключ к разгадке литиевого парадокса Солнца, о котором шла речь в гл. 5. Атомы этого легко разрушаемого элемента переносятся вглубь, в горячую зону, где они превращаются в атомы гелия в соответствии с реакциями, приведенными на рис.5.3, — это происходит прежде, чем звезда станет звездой главной последовательности.
Рождение звезд в природе
Мы познакомились с решениями Ларсона, которые получены для идеализированной задачи, поддающейся расчету на ЭВМ. Но соответствует ли описанный процесс действительности? Реализуется ли он в природе на самом деле? Вернемся к небу, туда, где возникают звезды-вернемся к ярким, голубым, а значит, молодым звездам! Будем искать следы образования звезд, объекты, существование которых следует ожидать на основании решений Ларсона.
Яркие голубые звезды очень горячи, температура на их поверхности достигает 35000 градусов. Соответственно их излучение обладает очень высокой энергией. Это излучение способно срывать электроны с атомов водорода в межзвездном газе, оставляя положительно заряженные атомные ядра. Водород ионизуется — яркие массивные звезды ионизуют окружающие газовые массы. В нашей Галактике эти области выдают себя своим свечением, которое возникает, когда ионизованные атомы водорода захватывают обратно электроны и при этом излучают свет. Тепловое излучение этих областей может быть обнаружено также в радиодиапазоне.
Преимущество измерений в радиодиапазоне состоит в том, что радиосигналы не искажаются поглощающими массами пыли. Лучшим примером такого участия на небе, где свечение межзвездного вещества возбуждается яркими массивными звездами, является опять же туманность Ориона (см. рис. 12.1). Есть ли здесь объекты, имеющие какое-либо отношение к процессам, рассчитанным Ларсоном? Львиную долю своего времени жизни протозвезда скрыта под пылевой оболочкой, которая медленно оседает на нее. Пыль поглощает излучение ядра; при этом она нагревается до нескольких сотен градусов и излучает в соответствии с этой температурой. Это тепловое излучение должно наблюдаться в ИК-диапазоне.
В 1967 г. Эрик Беклин и Джерри Нойгебауэр из Калифорнийского технологического института в Пасадене открыли в туманности Ориона инфракрасную звезду, светимость которой была примерно в 1000 раз выше светимости Солнца, а температура излучения составляла 700 градусов. Диаметр объекта составлял около 1000 диаметров Солнца. Именно так должна была бы выглядеть газопылевая оболочка протозвезды. В последнее время выяснилось, что в тех областях нашего Млечного Пути, где наиболее вероятно образование новых звезд, имеются компактные источники, излучающие не только в инфракрасном, но и в радиодиапазоне. В туманности Ориона боннский радиоастроном Петер Мецгер с коллегами обнаружил области высокой плотности водорода, откуда исходит особенно мощное радиоизлучение. В этих областях концентрация свободных электронов, отделенных от атомов водорода, в сотню раз выше, чем в окружающем пространстве. По сравнению с туманностью Ориона размеры излучающего объекта чрезвычайно малы: они оцениваются в 500000 диаметров Солнца, примерно вчетверо меньше, чем диаметр облака, падающего на ядро в модели Ларсона.
Кроме того, в туманности Ориона обнаружены объекты небольших размеров, откуда исходит молекулярное излучение, прежде всего излучение молекул воды. Молекулы излучают в радиодиапазоне, и это излучение может приниматься с помощью радиотелескопов. Оказывается, что пространственные размеры этих объектов составляют всего лишь 1000 диаметров Солнца. Вспомним, что у Ларсона исходный диаметр облака составлял несколько миллионов солнечных радиусов! Таким образом, молекулярное излучение должно, по-видимому, исходить от ядра протозвезды.
Конечно, следует быть осторожным в интерпретациях такого рода. С уверенностью можно лишь утверждать, что в туманности Ориона наблюдаются объекты, которые, ничем не выдавая себя в видимом свете, обладают весьма значительной концентрацией газа и пыли, что в точности соответствует облакам в модели Ларсона.
Есть, однако, и другие свидетельства в пользу того, что наблюдаемые источники ИК- и радиоизлучения действительно являются протозвездами. Недавно в нашем институте группа австрийского астронома Вернера Чарнутера повторила усовершенствованными методами расчеты модели Ларсона. Были рассчитаны, в частности, процессы, связанные с возникновением ИК-излучения. Совпадение с наблюдениями оказалось поразительным: все говорит о том, что мы действительно наблюдаем протозвезды, смоделированные на ЭВМ.
Коль скоро мы так вплотную приблизились к разгадке возникновения звезд, можно задать вопрос, удастся ли в рамках этой модели объяснить образование всех 100 миллиардов звезд нашей Галактики. На рис. 12.3 схематически представлена структура нашей звездной системы. Не все звезды лежат в одной плоскости: самые старые звезды распределены в почти сферической области пространства, которую называют гало. Звезды гало очень старые, как можно заключить из диаграммы Г — Р для имеющихся здесь шаровых скоплений. В сравнении с нашим Солнцем они по своему химическому составу беднее теми элементами, которые тяжелее гелия, часто больше чем в десять раз. Все молодые звезды находятся в плоскости Галактики и содержат в своем составе больше тяжелых элементов. Хотя и у них на элементы тяжелее гелия приходится лишь малый процент массы, они дают нам ключ к секрету возникновения нашей Галактики. Водород и гелий имелись здесь с начала мира — это, так сказать, богом данные элементы. Более тяжелые элементы должны были возникнуть позднее в недрах звезд и при взрывах сверхновых. Таким образом, химические различия между звездами галактического гало и звездами галактической плоскости связаны с ядерными реакциями, происходящими внутри звезд.