Рис. 12.3. Схема строения Млечного Пути. Большинство звезд находится в плоском диске (на рисунке мы смотрим на него сбоку). Стрелкой указано положение Солнца, светлая полоска посередине изображает поглощающие пылевые массы. Шаровые скопления (жирные точки) и очень старые звезды (мелкие точки) образуют гало Млечного Пути. Эти звезды существуют очень давно. Звезды, рождающиеся сегодня, находятся только в непосредственной близости к пылевым массам в центральной плоскости Галактики.
Можно считать, что сегодня уже выяснены основные закономерности строения нашей Галактики. Сейчас же нам придется вспомнить кое-какие сведения из школьного курса физики.
Момент импульса и коллапсирующие облака
Описание физического мира существенно упрощается с введением ряда «законов сохранения». В повседневной жизни мы то и дело пользуемся ими, порой не отдавая себе в этом отчета. Со школьной скамьи мы помним законы сохранения массы и энергии; с этими законами мы сталкиваемся каждый день. Менее очевиден, быть может, тот факт, что момент импульса (момент количества движения, кинетический момент) вращающегося тела, предоставленного самому себе, не может просто так исчезнуть. Однако наглядный пример действия этого закона сохранения всем хорошо знаком. Когда фигуристка делает пируэт на льду, она вначале вращается медленно, вытянув руки в стороны. Когда же она сгибает руки, вращение без всякого внешнего усилия ускоряется. Это происходит в силу закона сохранения момента импульса. То же самое, хотя и не столь завлекательное, наблюдается при вращении облака межзвездного газа. Пусть облако вначале делает один полный оборот за 10 миллионов лет. Когда оно сожмется до одной десятой своего первоначального диаметра, оно будет вращаться в сто раз быстрее, совершая полный оборот за сто тысяч лет. Когда облако еще уменьшится, оно будет вращаться еще быстрее. Грубо говоря, произведение числа оборотов облака за единицу времени на площадь его поверхности (которую приближенно можно считать сферической) в ходе коллапса остается постоянным. Таким образом, чем меньше облако, тем быстрее оно вращается.
При этом все значительнее становится центробежная сила, действующая вдоль экваториальной плоскости против силы тяжести. Коллапсирующее облако сплющивается. Это сказывается на образовании отдельных звезд; имеет это отношение и к образованию нашего Млечного Пути.
История Млечного Пути, восстановленная по следам
Мы не знаем, откуда оно взялось. Когда-то вещество, возникшее в начале мира и носящееся в пространстве, образовало облако в несколько миллиардов солнечных масс и стало уплотняться. Как и всякое вещество, этот газ, выделившийся из турбулентной массы, приобрел вращательное движение. Постепенно облако сжималось и становилось более плотным; в нем выделились отдельные области, превратившиеся в небольшие, самостоятельно уплотняющиеся газовые облака. Возникли первые звезды. Они состояли только из водорода и гелия, и в них происходило термоядерное горение водорода (реакция соединения двух протонов). Довольно скоро наиболее массивные звезды израсходовали свой запас водорода и взорвались, став сверхновыми. В результате этого межзвездный газ обогатился элементами тяжелее гелия. Это происходило повсюду, так как все галактическое облако имело еще шарообразную форму (рис. 12.4, а). Поэтому самые старые звезды и очень старые шаровые скопления находятся в галактическом гало. Звезды галактического гало возникли первыми, задолго до того как Млечный Путь принял форму диска, задолго до появления нашего Солнца. В них тяжелые элементы присутствуют в очень малых количествах: эти звезды возникли из вещества, которое было еще мало обогащено атомами, образовавшимися в результате ядерных реакций в других звездах.
Рис. 12.4. Схема образования Млечного Пути. Примерно 10 миллиардов лет назад из первичной материи образовалось облако, которое стало уплотняться благодаря собственной гравитации. С увеличением плотности образовались первые звезды (точки) и шаровые скопления (жирные точки) (а). Они и сегодня заполняют сферическую область, в которой они возникли, и движутся относительно центра по траекториям, показанным красными стрелками (б). Массивные звезды быстро прошли весь свой путь развития и отдали обратно в межзвездный газ вещество, обогащенное тяжелыми элементами. Стали образовываться звезды, уже богатые тяжелыми элементами. Благодаря вращению уплотненный газ образовал диск. Здесь и по сей день возникают звезды (в). Эта схема объясняет пространственную структуру нашей Галактики и химические различия между периферийными звездами и звездами в центре.
Но эволюция шла дальше. Межзвездный газ постоянно обогащался тяжелыми элементами. В нем возникали пылевые зерна в результате столкновений частиц газа с ядрами конденсации, выброшенными развившимися звездами. Скоро и вращение приобрело заметную скорость. Все уплотняющиеся газопылевые массы принимали форму плоского диска, оставляя за собой шарообразное гало из старых звезд и шаровых скоплений (рис. 12.4,б). Новые звезды образовывались теперь только во все более плоской чечевицеобразной области из вещества, содержащего все большее количество тяжелых элементов. Большая часть газа была уже израсходована, и последние звезды образовывались в галактической плоскости. Первая фаза звездообразования закончилась.
Эта картина объясняет основные свойства нашей Галактики: самые старые звезды принадлежат шарообразному гало и бедны тяжелыми элементами. Самые молодые звезды образуются сегодня лишь в тонком диске, поскольку только здесь осталось еще достаточное количество газа.
Момент импульса, унаследованный от облака, из которого образовалась наша Галактика, виной тому, что наша звездная система имеет форму плоского диска. Именно поэтому мы видим свой Млечный Путь на небе как узкую полосу.
Кто командует образованием звезд?
Что же заставляет сегодня межзвездное вещество конденсироваться в определенных местах в плоскости нашего Млечного Пути и образовывать звезды? Почему в других местах нашей Галактики звезды не образуются? Млечный Путь, если смотреть на него из космической дали, выглядел бы подобно Туманности Андромеды: плоский диск с выраженной спиральной структурой (см. рис. 0.1). У других звездных систем спиральная структура проявляется еще отчетливей (см. рис. 0.4). На снимках удаленных галактик спиральные рукава выделяются потому, что в них возбуждается свечение ионизованного водорода. Как мы уже знаем из примера туманности Ориона, за ионизацию водорода ответственны яркие массивные звезды главной последовательности. Таким образом, спиральные рукава — это области, где имеются молодые звезды, т. е. области, где звезды только возникли. И в нашей Галактике молодые звезды выстраиваются вдоль спиральных рукавов.
С помощью радиоастрономии удается очень детально исследовать распределение межзвездного газа в нашем Млечном Пути; обнаруживается, что в спиральных рукавах плотность газа выше, чем вообще в плоскости Галактики. Итак, дано: с одной стороны, спиральные рукава являются областями повышенной плотности газа, с другой стороны, именно здесь находятся молодые звезды. Спрашивается: чем обусловлена спиральная структура, делающая галактики похожими на огненные колеса фейерверка?