Действие DNAT может выполняться только в цепочках PREROUTING и OUTPUT таблицы nat, и во вложенных под-цепочках. Важно запомнить, что вложенные подцепочки, реализующие DNAT не должны вызываться из других цепочек, кроме PREROUTING и OUTPUT.
Таблица 6-16. Действие DNAT
(Ключ – Пример – Описание)
Ключ: –to-destination
Пример: iptables -t nat -A PREROUTING -p tcp -d 15.45.23.67 –dport 80 -j DNAT –to-destination 192.168.1.1-192.168.1.10
Описание: Ключ –to-destination указывает, какой IP адрес должен быть подставлен в качестве адреса места назначения. В выше приведенном примере во всех пакетах, пришедших на адрес 15.45.23.67, адрес назначения будет изменен на один из диапазона от 192.168.1.1 до 192.168.1.10. Как уже указывалось выше, все пакеты из одного потока будут направляться на один и тот же адрес, а для каждого нового потока будет выбираться один из адресов в указанном диапазоне случайным образом. Можно также определить единственный IP адрес. Можно дополнительно указать порт или диапазон портов, на который (которые) будет перенаправлен траффик. Для этого после ip адреса через двоеточие укажите порт, например –to-destination 192.168.1.1:80, а указание диапазона портов выглядит так: –to-destination 192.168.1.1:80-100. Как вы можете видеть, синтаксис действий DNAT и SNAT во многом схож. Не забывайте, что указание портов допускается только при работе с протоколом TCP или UDP, при наличии опции –protocol в критерии.
Действие DNAT достаточно сложно в использовании и требует дополнительного пояснения. Рассмотрим простой пример. У нас есть WEB сервер и мы хотим разрешить доступ к нему из Интернет. Мы имеем только один реальный IP адрес, а WEB-сервер расположен в локальной сети. Реальный IP адрес $INET_IP назначен брандмауэру, HTTP сервер имеет локальный адрес $HTTP_IP и, наконец брандмауэр имеет локальный алрес $LAN_IP. Для начала добавим простое правило в цепочку PREROUTING таблицы nat:
iptables -t nat -A PREROUTING –dst $INET_IP -p tcp –dport 80 -j DNAT \ –to-destination $HTTP_IP
В соответствии с этим правилом, все пакеты, поступающие на 80-й порт адреса $INET_IP перенаправляются на наш внутренний WEB-сервер. Если теперь обратиться к WEB-серверу из Интернет, то все будет работать прекрасно. Но что же произойдет, если попробовать соединиться с ним из локальной сети? Соединение просто не установится. Давайте посмотрим как маршрутизируются пакеты, идущие из Интернет на наш WEB-сервер. Для простоты изложения примем адрес клиента в Интернет равным $EXT_BOX.
1. Пакет покидает клиентский узел с адресом $EXT_BOX и направляется на $INET_IP
2. Пакет приходит на наш брандмауэр.
3. Брандмауэр, в соответствии с вышеприведенным правилом, подменяет адрес назначения и передает его дальше, в другие цепочки.
4. Пакет передается на $HTTP_IP.
Пакет поступает на HTTP сервер и сервер передает ответ через брандмауэр, если в таблице маршрутизации он обозначен как шлюз для $EXT_BOX. Как правило, он назначается шлюзом по-умолчанию для HTTP сервера.
5. Брандмауэр производит обратную подстановку адреса в пакете, теперь все выглядит так, как будто бы пакет был сформирован на брандмауэре.
6. Пакет передается клиенту $EXT_BOX.
7. А теперь посмотрим, что произойдет, если запрос посылается с узла, расположенного в той же локальной сети. Для простоты изложения примем адрес клиента в локальной сети равным $LAN_BOX.
1. Пакет покидает $LAN_BOX.
2. Поступает на брандмауэр.
3. Производится подстановка адреса назначения, однако адрес отправителя не подменяется, т.е. исходный адрес остается в пакете без изменения.
4. Пакет покидает брандмауэр и отправляется на HTTP сервер.
5. HTTP сервер, готовясь к отправке ответа, обнаруживает, что клиент находится в локальной сети (поскольку пакет запроса содержал оригинальный IP адрес, который теперь превратился в адрес назначения) и поэтому отправляет пакет непосредственно на $LAN_BOX.
6. Пакет поступает на $LAN_BOX. Клиент «путается», поскольку ответ пришел не с того узла, на который отправлялся запрос. Поэтому клиент «сбрасывает» пакет ответа и продолжает ждать «настоящий» ответ.