Выбрать главу

Compare - функциональный объект, который возвращает значение, обратимое в bool. Compare comp используется полностью для алгоритмов, принимающих отношение упорядочения. comp удовлетворяет стандартным аксиомам для полного упорядочения и не применяет никакую непостоянную функцию к разыменованному итератору. Для всех алгоритмов, которые берут Compare, имеется версия, которая использует operator‹ взамен. То есть comp(*i, *j)==true по умолчанию для *i‹*j==true.

Последовательность сортируется относительно компаратора comp, если для любого итератора i, указывающего на элемент в последовательности, и любого неотрицательного целого числе n такого, что i + n является допустимым итератором, указывающим на элемент той же самой последовательности, comp(*(i+n), *i)==false.

В описаниях функций, которые имеют дело с упорядочивающими отношениями, мы часто используем представление равенства, чтобы описать такие понятия, как устойчивость. Равенство, к которому мы обращаемся, не обязательно operator==, а отношение равенства стимулируется полным упорядочением. То есть два элементa a и b считаются равными, если и только если !(a ‹ b)&&!(b ‹ a).

Сортировка (Sort)

template ‹class RandomAccessIterator›

void sort(RandomAccessIterator first, RandomAccessIterator last);

template ‹class RandomAccessIterator, class Compare›

void sort(RandomAccessIterator first, RandomAccessIterator last, Compare соmр);

sort сортирует элементы в диапазоне [first, last). Делается приблизительно NIogN (где N равняется last-first) сравнений в среднем. Если режим наихудшего случая важен, должны использоваться stable_sort или partial_sort.

template ‹class RandomAccessIterator›

void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template ‹class RandomAccessIterator, class Compare›

void stable_sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp);

stable_sort сортирует элементы в диапазоне [first, last). Он устойчив, то есть относительный порядок равных элементов сохраняется. Делается максимум N(logN)2 (где N равняется last-first) сравнений; если доступна достаточная дополнительная память, тогда это - NlogN.

template ‹class RandomAccessIterator›

void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last);

template ‹class RandomAccessIterator, class Compare›

void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last, Compare comp);

partial_sort помещает первые middle - first сортированных элементов из диапазона [first, last) в диапазон [first, middle). Остальная часть элементов в диапазоне [middle, last) помещена в неопределённом порядке. Берётся приблизительно (last-first)*log(middle-first) сравнений.

template ‹class InputIterator, class RandomAccessIterator›

RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last);

template ‹class InputIterator, class RandomAccessIterator, class Compare›

RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last, Compare comp);

partial_sort_copy помещает первые min(last-first, result_last-result_first) сортированных элементов в диапазон [result_first, result_first+min(last-first, result_last-result_first)). Возвращается или result_last, или result_first+(last-first), какой меньше. Берётся приблизительно (last-first)*log(min(last-first, result_last-result_first)) сравнений.

N-й элемент (Nth element)

template ‹class RandomAccessIterator›

void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last);

template ‹class RandomAccessIterator, class Compare›

void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last, Compare comp);

После операции nth_element элемент в позиции, указанной nth, является элементом, который был бы в той позиции, если бы сортировался целый диапазон. Также для любого итератора i в диапазоне [first, nth) и любого итератора j в диапазоне [nth, last) считается, что !(*i › *j) или comp(*i, *j)==false. Операция линейна в среднем.

Двоичный поиск (Binary search)

Все алгоритмы в этом разделе - версии двоичного поиска. Они работают с итераторами не произвольного доступа, уменьшая число сравнений, которое будет логарифмическим для всех типов итераторов. Они особенно подходят для итераторов произвольного доступа, так как эти алгоритмы делают логарифмическое число шагов в структуре данных. Для итераторов не произвольного доступа они выполняют линейное число шагов.

template ‹class ForwardIterator, class T›

ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value);

template ‹class ForwardIterator, class T, class Compare›

ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp);

lower_bound находит первую позицию, в которую value может быть вставлено без нарушения упорядочения. lower_bound возвращает самый дальний итератор i в диапазоне [first, last) такой, что для любого итератора j в диапазоне [first, i) выполняются следующие соответствующие условия: *j‹value или comp(*j, value)==true. Делается максимум log(last-first)+1 сравнений.

template ‹class ForwardIterator, class T›