ForwardIterator min_element(ForwardIterator first, ForwardIterator last, Compare comp);
min_element возвращает первый такой итератор i в диапазоне [first, last), что для любого итератора j в диапазоне [first, last) выполняются следующие соответствующие условия: !(*j‹*i) или comp(*j, *i)==false. Выполняется точно max((last-first)-1, 0) соответствующих сравнений.
Лексикографическое сравнение (Lexicographical comparison)
template ‹class InputIterator1, class InputIterator2›
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2);
template ‹class InputIterator1, class InputIterator2, class Compare›
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp);
lexicographical_compare возвращает true, если последовательность элементов, определённых диапазоном [first1, last1), лексикографически меньше, чем последовательность элементов, определённых диапазоном [first2, last2). Иначе он возвращает ложь. Выполняется максимально 2*min((last1-first1), (last2-first2)) сравнений.
Генераторы перестановок (Permutation generators)
template ‹class BidirectionalIterator›
bool next_permutation(BidirectionalIterator first, BidirectionalIterator last);
template ‹class BidirectionalIterator, class Compare›
bool next_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp);
next_permutation берёт последовательность, определённую диапазоном [first, last), и трансформирует её в следующую перестановку. Следующая перестановка находится, полагая, что множество всех перестановок лексикографически сортировано относительно operator‹ или comp. Если такая перестановка существует, возвращается true. Иначе он трансформирует последовательность в самую маленькую перестановку, то есть сортированную по возрастанию, и возвращает false. Максимально выполняется (last-first)/2 перестановок.
template ‹class BidirectionalIterator›
bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last);
template ‹class BidirectionalIterator, class Compare›
bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp);
prev_permutation берёт последовательность, определённую диапазоном [first, last), и трансформирует её в предыдущую перестановку. Предыдущая перестановка находится, полагая, что множество всех перестановок лексикографически сортировано относительно operator‹ или comp. Если такая перестановка существует, возвращается true. Иначе он трансформирует последовательность в самую большую перестановку, то есть сортированную по убыванию, и возвращает false. Максимально выполняется (last - first)/2 перестановок.
Обобщённые численные операции (Generalized numeric operations)
Накопление (Accumulate)
template ‹class InputIterator, class T›
T accumulate(InputIterator first, InputIterator last, T init);
template ‹class InputIterator, class T, class BinaryOperation›
T accumulate(InputIterator first, InputIterator last, T init, BinaryOperation binary_op);
accumulate подобен оператору APL reduction и функции Common Lisp reduce, но он избегает трудности определения результата уменьшения для пустой последовательности, всегда требуя начальное значение. Накопление выполняется инициализацией сумматора acc начальным значением init и последующим изменением его acc = acc+*i или acc = binary_op(acc, *i) для каждого итератора i в диапазоне [first, last) по порядку. Предполагается, что binary_op не вызывает побочных эффектов.
Скалярное произведение (Inner product)
template ‹class InputIterator1, class InputIterator2, class T›
T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init);
template ‹class InputIterator1, class InputIterator2, class T, class BinaryOperation1, class BinaryOperation2›
T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2);
inner_product вычисляет свой результат, инициализируя сумматор acc начальным значением init и затем изменяя его acc = acc+(*i1)*(*i2) или acc = binary_op1(acc, binary_op2(*i1, *i2)) для каждого итератора i1 в диапазоне [first, last) и итератора i2 в диапазоне [first2, first2+(last-first)) по порядку. Предполагается, что binary_op1 и binary_op2 не вызывают побочных эффектов.
Частичная сумма (Partial sum)
template ‹class InputIterator, class OutputIterator›
OutputIterator partial_sum(InputIterator first, InputIterator last, OutputIterator result);
template ‹class InputIterator, class OutputIterator, class BinaryOperation›
OutputIterator partial_sum(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op);
partial_sum присваивает каждому итератору i в диапазоне [result, result+(last-first)) значение, соответственно равное ((…(*first+*(first+1))+…)+*(first+(i-result))) или binary_op(binary_op(…, binary_op(*first, *(first+1)),…), *(first+(i-result))). Функция partial_sum возвращает result+(last-first). Выполняется binary_op точно (last-first)-1 раз. Ожидается, что binary_op не имеет каких-либо побочных эффектов. result может быть равен first.
Смежная разность (Adjacent difference)
template ‹class InputIterator, class OutputIterator›
OutputIterator adjacent_difference(InputIterator first, InputIterator last, OutputIterator result);
template ‹class InputIterator, class OutputIterator, class BinaryOperation›
OutputIterator adjacent_difference(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op);