Выбрать главу

О всех подобных лампах писали в журналах, делались сообщения в академиях и ученых обществах, на них выдавались привилегии, но ни одно из этих изобретений не получило практического применения — лампы оказывались недолговечными, очень непостоянными, требовавшими довольно сильного тока и в общем обладавшими недостатками, которые не давали надежды на возможность их устранения. Это обстоятельство вызвало на долгое время снижение интереса к лампам, основанным на накаливании проводника.

Недоверие к лампам накаливания было настолько большим, что один из крупнейших электриков-изобретателей, придумавший в 1878 г. совершенно оригинальную, внушавшую большие надежды лампу накаливания, не обнаружил сам к ней большого интереса, не стал заниматься ее усовершенствованием, что, конечно, не могло способствовать ее распространению. Этим изобретателем был П. Н. Яблочков, предложивший свою «каолиновую лампу», т. е. лампу, в которой в качестве калильного тела применялись стерженьки разной формы из каолина или другого ему подобного материала. А между тем во время своего появления (1877 г.) эта лампа могла бы иметь большой успех, как показала появившаяся на десять лет позже лампа Нернста, основанная на том же принципе.

Впрочем нельзя удивляться отношению Яблочкова к своей каолиновой лампе. Изобретение ее совпало по времени с громадным успехом Яблочковской свечи, и изобретатель был целиком увлечен этим изобретением, тем более что он и теоретически считал дуговую лампу наиболее эффективной по сравнению с любой другой электрической лампой.

И вот в это время появляется другой изобретатель, который начинает заниматься этим источником света и доводит его до такого состояния, что его лампу оказалось возможным применить на практике и к уличному, и к домашнему, и к специальному освещению. Этим смелым изобретателем был Александр Николаевич Лодыгин.

Александр Николаевич родился 18 октября 1847 г. в Тамбовской губернии. Он предназначался родными для военной службы и был помещен для получения образования в Воронежский кадетский Корпус. Из Корпуса Лодыгин перешел в Московское военное училище, из которого был выпущен офицером в армию в 1867 г. Повидимому, офицерская жизнь того времени мало удовлетворяла молодого офицера, как она не удовлетворяла других его современников, Яблочкова и Чиколева, и он скоро вышел в отставку. Это был период в России, когда молодые передовые люди стремились приблизиться к «простому народу», как тогда говорили, узнать его жизнь и способствовать его культурному развитию. Молодой Лодыгин, сняв офицерскую форму, поступает на Тульский оружейный завод в качестве сперва молотобойца, затем слесаря. Проработав некоторое время в Туле, Александр Николаевич перебирается в Петербург, где начинает слушать лекции в Университете. Его тянула в центр надежда осуществить свои изобретательские мысли, над которыми он начал задумываться еще мальчиком. Это были мысли об устройстве «летательной машины».

В Петербурге приступить к осуществлению своей машины Лодыгину не удалось, и ему пришла мысль предложить свое изобретение Французскому правительству. Это был 1870 г. Франция изнемогала в борьбе с Германией, и Лодыгин надеялся, что его изобретение принесет пользу стране, которой сочувствовала вся интеллигенция России.

С невероятными трудностями, преодолев все опасности, рискуя быть принятым за шпиона (что однажды и случилось), Лодыгин добрался до Парижа. Его надежды как будто бы начали оправдываться: Французским правительством были даны средства на осуществление его летательной машины и изготовление ее началось на заводах в Крезо. Однако, конец Франко-Прусской войны положил конец и надеждам Лодыгина. Отпуск средств был прекращен, постройка машины тоже, и Лодыгин очутился не у дел. Но в то время его начала занимать уже другая мысль, осуществление которой поставило имя Лодыгина на одну ступень с именами самых крупных пионеров электротехники.

Именно, он стал думать о «лампе накаливания». Сохранились сведения, что эта мысль явилась у него в связи с необходимостью снабдить освещением его летательную машину, для которой существовавшие в 70-м году дуговые лампы были, конечно, совершенно непригодны.

Молодой изобретатель возвращается в 1872 г. на родину и начинает работать над своей идеей. Его не смущает ни неуспех его предшественников, ни скептическое отношение современников. Интересно отметить, что для поддержки своего существования Лодыгин должен был поступить на службу в Петербурге в компанию, эксплоатировавшую газовое освещение, главнейшим конкурентом которого должны были, в случае успеха, явиться его электрические лампы. Александр Николаевич горячо принялся за работу. Отдав дань, как и его предшественники, опытам над применением в качестве калильных тел тугоплавких металлов, А. Н. Лодыгин перешел к изучению угольных проводников. Вот что пишет сам Лодыгин в своей брошюре «Заметка о дуговых лампах и лампах накаливания», изданной в Париже в 1886 г., о пути, по которому он пришел к предложенной им конструкции лампы накаливания. «При моих опытах над лампой с вольтовой дугой, производившихся 15 лет тому назад, я мог убедиться, что свет в дуговой лампе происходит только от накаленных концов угольных электродов и что свет, даваемый самой дугой, очень слаб.

Чтобы убедиться в этом, достаточно получить на экране посредством системы оптических стекол изображение вольтовой дуги и концов угольных электродов… Вольтова дуга, совершенно неизбежная в источниках электрического света, имеющих два угольных полюса, сама по себе не только бесполезна, так как не дает света, но и вредна, так как образующаяся поляризация поглощает известную часть энергии. Поэтому мне пришла в голову мысль заменить дугу цилиндром из угля, который, будучи нагреваем током, давал бы свет, не вызывая явления поляризации и, следовательно, не поглощая лишней энергии.

Я думал, что в этих условиях можно получить большее количество света при одинаковой затрате работы.

Таким образом, от двух угольных полюсов, соединенных вольтовой дугой, я перешел к одному тонкому угольному стержню, не имеющему разрывов.

Проектируя на экран изображение двух угольных электродов в 7 мм в диаметре, я нашел, что светящиеся концы у них образуют два конуса, имеющих 3,5 мм в диаметре и 3,5 мм в высоту. Таким образом, 38,5 мм2 угольной поверхности достигают той температуры, которая необходима для достижения накала. Но так как ток должен поддерживать на определенной высоте температуру всего объема конусов, тогда как светится только их поверхность, то я подумал, что, заменив оба конуса одним цилиндром такого же объема, уменьшив диаметр этого цилиндра и увеличив его длину, я получу большую светящуюся поверхность при том же объеме цилиндра и, следовательно, при том же токе. Правда, каждая единица этой поверхности будет давать менее света, так как если, не изменяя объема, увеличить поверхность, то потеря теплоты лучеиспусканием пропорционально увеличится, но сумма света останется та же самая, и ее дробление значительно облегчится».

Далее, в той же брошюре, Лодыгин говорит о том, как он, стремясь уменьшить сгорание угля и руководствуясь результатом опытов Прово и Дезень, показавшим, что охлаждение нагретого тела происходит гораздо скорее в газообразной среде, чем в пустоте, пришел к заключению о необходимости помещать накаливаемый уголь в «герметически закупоренный, пустой, прозрачный сосуд».

Наконец, основываясь на опытах Беккереля, показавших, что с возрастанием температуры нагретого тела сильно растет сила света, испускаемая единицей его поверхности, Лодыгин счел весьма желательным, по возможности, увеличить температуру накаливаемого тела. Признавая, что изготовляемые им нити не выдерживают сильного накала, Лодыгин высказывает надежду, что, усовершенствовав способы изготовления нити, можно будет получить лампы накаливания, по экономичности равные дуговым, и высказывает убеждение, что в будущем лампы накаливания станут даже более экономичным источником света, чем дуговые.