Выбрать главу

«Тогда, как и теперь, я не верю в возможность электрической передачи больших мощностей на большие расстояния; электрические железные дороги мне казались и кажутся и теперь решением, применить которое можно посоветовать только в совершенно исключительных случаях. Я считал тогда, и считаю и теперь, что при современных знаниях об искусстве сооружения динамоэлектрических машин, при их помощи можно только передать энергию на небольшие расстояния, например, для приведения в действие станков, подъемников, вентиляторов, одним словом, механизмов, которые ныне приводятся в действие ременными или канатными передачами».

Возможность электрической передачи на большие расстояния была широко продемонстрирована на Мюнхенской выставке 1882 г. французским инженером, впоследствии академиком, Марселем Депре, передававшим энергию от водяной турбины, находившейся в Мисбахе, в 60 км от Мюнхена, на Мюнхенскую выставку, где небольшой электродвигатель приводил в действие небольшой насос, мощностью около 0,5 л. с. Как известно, опыт Депре привлек общее внимание. Считалось, что мюнхенский опыт Депре положил начало новой эры в энергоснабжении. Между тем, гораздо раньше Депре, русские работники практически показали возможность электрической передачи гораздо больших мощностей и разработали теоретически вопрос об электропередачах. Именно, уже в 1874 г. военный инженер Ф. А. Пироцкий устроил на Волковом поле, вблизи Петербурга, электрическую передачу мощностью около 6 л. с. сначала на расстояние нескольких десятков метров, увеличенное затем до 1 км. Продолжая свои опыты, Пироцкий с успехом пытался применять в качестве проводов для передачи рельсы на участке паровой железной дороги, вблизи Петербурга, а также и рельсы, уложенные вдоль одной улицы Петербурга для городской конной железной дороги (трамвай с конной тягой).

На основании своих опытов Пироцкий пришел к заключению о полной возможности электрической передачи больших мощностей на большие расстояния и, основываясь на этом заключении, предложил пользоваться в качестве источников энергии водяными потоками. В 1877 г. Пироцкий уже напечатал в «Инженерном журнале» статью под заглавием «О передаче работы воды, как двигателя, на всякое расстояние посредством гальванического тока», в которой он писал о преимуществах использования водяных двигателей с электропередачей энергии на расстояние, по сравнению с использованием паровых двигателей, устанавливаемых на месте потребления.

Опыты Пироцкого не привлекли особого внимания, и были скоро забыты. Его предложения относительно использования водных сил не получили осуществления.

Известно, как приняли Маркс и Энгельс известие об опытах Депре и какое значение они придавали возможности передачи энергии на расстояние. Однако, потребовалось немало времени, чтобы электропередача энергии действительно стала тем, что от нее ждали основоположники марксизма. Потребовались и разработка ряда теоретических вопросов и производство многих исследований на опытных установках.

Теоретические обоснования и расчеты электропередач были в тот же период времени даны в ряде работ, напечатанных еще в 1880 г., также одним из пионеров русской электротехники Д. А. Лачиновым, пришедшим в своих теоретических изысканиях к таким выводам, которые позже подтвердил на опыте Марсель Депре в 1882 г.

После опытной электропередачи, осуществленной им для демонстрации электропередачи небольшой мощности на Мюнхенской выставке в 1882 г., Марсель Депре в 1883 г. осуществил близ Гренобля (Франция) опыт электропередачи 7 л. с, т. е. мощности, передававшейся Пироцким еще в 1874 г. Дальнейшие опыты Депре электропередачи из Парижа в Крейль и обратно током напряжением около 6000 в, опыты Фонтена, а затем Тюри и других электриков показали практическую возможность передавать значительно большие мощности на значительно большие расстояния. При этом выяснилось, что пределы мощности и расстояния электропередачи тесно связаны с напряжением тока, посредством которого производится электропередача.

В этом отношении постоянный ток, посредством которого осуществлялись все электропередачи, не позволял идти сколько-нибудь далеко, так как надежно работающие генераторы и двигатели постоянного тока удавалось строить только для напряжений до 5–7 и максимум 10 тыс. в. Правда, сначала Фонтеном, а потом Тюри предлагалось соединять для электропередач последовательно несколько генераторов на генераторном конце электропередачи и несколько электродвигателей соединять также последовательно на приемном и, таким образом, повышать напряжение электропередач, и правда, что несколько таких электропередач с напряжением от 2000 до 100 000 в были сооружены, однако все они обладали такими недостатками, что сколько-нибудь значительного распространения получить не могли.

Значительно большие возможности в смысле повышения напряжения электропередач представлял переменный ток. Применяя трансформаторы переменного тока, можно было легко получать токи практически любого напряжения. Однако, с другой стороны, известные в то время электродвигатели переменного тока отличались такими недостатками, которые делали их во многих случаях непригодными для технических целей. Главнейшими из этих недостатков были те, что двигатели при включении тока не приходили сами в движение, а их надо было разворачивать до определенной скорости, и что каждый двигатель мог работать затем только с одной скоростью, зависевшей от числа пар полюсов в нем и частоты питающего переменного тока. При таких свойствах широкое применение двигателей переменного тока не могло иметь места, и применение для электропередач переменного тока становилось вообще нецелесообразным.

Перед электриками стала задача найти выход из этого положения и найти возможность каким-либо способом использовать переменный ток и трансформаторы переменного тока не только для освещения, как это уже делал Яблочков для своих свечей и затем другие электрики для питания ламп накаливания, но также и для целей питания электродвигателей.

Первый шаг в этом направлении был сделан итальянским электриком Феррарисом, предложившим применять систему двух переменных токов, разнящихся по фазе на 90°, названную впоследствии «двухфазным» током. Феррарис показал, что при помощи двухфазных токов можно получить внутри железного кольца, снабженного четырьмя обмотками, так называемое «вращающееся магнитное поле», т. е. магнитное поле, остающееся постоянным по величине, но направление которого непрерывно меняется, вращаясь вокруг оси кольца. Если внутри такого кольца-статора поместить или массивный железный цилиндр, или железный цилиндрический сердечник, снабженный замкнутой на себя обмоткой, расположенной вдоль образующих цилиндра, ось которого совпадает с осью статора, то такой «ротор» придет во вращение и будет в состоянии производить механическую работу за счет энергии, получаемой статором от внешнего источника тока. Феррарис осуществил свою идею только в нескольких, почти демонстрационных приборах. В дальнейшем ее разработал и осуществил практически известный югославский электротехник Никола Тесла. Американской, фирмой Вестингауз, в которой работал Тесла, по его системе был построен ряд генераторов и двигателей. Двухфазный ток был применен даже на Ниагарской электростанции. Однако, несмотря на авторитет Тесла и на заинтересованность одной из мощнейших электротехнических фирм мира, двухфазный ток не получил дальнейшего распространения. Основной причиной этого неуспеха было то, что появилось новое изобретение, которое по-новому решало, проблему и об электродвигателе переменного тока, и о передаче энергии переменным током и притом гораздо лучше, чем ее решало применение двухфазного тока.

Это изобретение было сделано Михаилом Осиповичем Доливо-Добровольским. Именно М. О. Доливо-Добровольский предложил применять для электрической передачи энергии не двухфазный переменный ток, а трехфазный. Под именем трехфазного тока понимают систему из трех переменных токов, сдвинутых по фазе на 1/3 периода, т. е. на 120°. Такая система имеет ряд преимуществ перед двухфазной, в частности ту, что для передачи энергии по этой системе требуется не четыре провода, как при двухфазной, но только три. Это обуславливается основным свойством трехфазного тока, заключающимся в том, что в этой системе в каждый момент времени сумма сил токов, проходящих по трем проводам, равна нулю. Точно так же равна нулю в каждый момент времени сумма электродвижущих сил, генерируемых в трех фазах обмотки генераторов трехфазного тока. Это свойство дает возможность соединять провода трехфазного тока так, что для передачи энергии можно ограничиться тремя проводами вместо шести, которые должны были бы итти от шести концов трехфазных обмоток генератора.