Выбрать главу

use std::fmt;

struct Circle {

radius: i32

}

impl fmt::Display for Circle {

fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

write!(f, "Circle of radius {}", self.radius)

}

}

fn main() {

let circle = Circle { radius: 6 };

println!("{}", circle.to_string());

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

One of the more common types to convert a string into is a number. The idiomatic approach to this is to use the parse function and either to arrange for type inference or to specify the type to parse using the 'turbofish' syntax. Both alternatives are shown in the following example.

This will convert the string into the type specified so long as the FromStr trait is implemented for that type. This is implemented for numerous types within the standard library. To obtain this functionality on a user defined type simply implement the FromStr trait for that type.

fn main() {

let parsed: i32 = "5".parse().unwrap();

let turbo_parsed = "10".parse::<i32>().unwrap();

let sum = parsed + turbo_parsed;

println!("Sum: {:?}", sum);

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

A Rust program is (mostly) made up of a series of statements:

fn main() {

// statement

// statement

// statement

}

There are a few kinds of statements in Rust. The most common two are declaring a variable binding, and using a ; with an expression:

fn main() {

// variable binding

let x = 5;

// expression;

x;

x + 1;

15;

}

Blocks are expressions too, so they can be used as values in assignments. The last expression in the block will be assigned to the place expression such as a local variable. However, if the last expression of the block ends with a semicolon, the return value will be ().

fn main() {

let x = 5u32;

let y = {

let x_squared = x * x;

let x_cube = x_squared * x;

// This expression will be assigned to `y`

x_cube + x_squared + x

};

let z = {

// The semicolon suppresses this expression and `()` is assigned to `z`

2 * x;

};

println!("x is {:?}", x);

println!("y is {:?}", y);

println!("z is {:?}", z);

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

An essential part of any programming languages are ways to modify control flow: if/else, for, and others. Let's talk about them in Rust.

Branching with if-else is similar to other languages. Unlike many of them, the boolean condition doesn't need to be surrounded by parentheses, and each condition is followed by a block. if-else conditionals are expressions, and, all branches must return the same type.

fn main() {

let n = 5;

if n < 0 {

print!("{} is negative", n);

} else if n > 0 {

print!("{} is positive", n);

} else {

print!("{} is zero", n);

}

let big_n =

if n < 10 && n > -10 {

println!(", and is a small number, increase ten-fold");

// This expression returns an `i32`.

10 * n

} else {

println!(", and is a big number, halve the number");

// This expression must return an `i32` as well.

n / 2

// TODO ^ Try suppressing this expression with a semicolon.

};

// ^ Don't forget to put a semicolon here! All `let` bindings need it.

println!("{} -> {}", n, big_n);

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX