Выбрать главу

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Try to run this to see what happens without the custom cfg flag.

With the custom cfg flag:

$ rustc --cfg some_condition custom.rs && ./custom

condition met!

Generics is the topic of generalizing types and functionalities to broader cases. This is extremely useful for reducing code duplication in many ways, but can call for rather involving syntax. Namely, being generic requires taking great care to specify over which types a generic type is actually considered valid. The simplest and most common use of generics is for type parameters.

A type parameter is specified as generic by the use of angle brackets and upper camel case: <Aaa, Bbb, ...>. "Generic type parameters" are typically represented as <T>. In Rust, "generic" also describes anything that accepts one or more generic type parameters <T>. Any type specified as a generic type parameter is generic, and everything else is concrete (non-generic).

For example, defining a generic function named foo that takes an argument T of any type:

fn foo<T>(arg: T) { ... }

Because T has been specified as a generic type parameter using <T>, it is considered generic when used here as (arg: T). This is the case even if T has previously been defined as a struct.

This example shows some of the syntax in action:

// A concrete type `A`.

struct A;

// In defining the type `Single`, the first use of `A` is not preceded by `<A>`.

// Therefore, `Single` is a concrete type, and `A` is defined as above.

struct Single(A);

// ^ Here is `Single`s first use of the type `A`.

// Here, `<T>` precedes the first use of `T`, so `SingleGen` is a generic type.

// Because the type parameter `T` is generic, it could be anything, including

// the concrete type `A` defined at the top.

struct SingleGen<T>(T);

fn main() {

// `Single` is concrete and explicitly takes `A`.

let _s = Single(A);

// Create a variable `_char` of type `SingleGen<char>`

// and give it the value `SingleGen('a')`.

// Here, `SingleGen` has a type parameter explicitly specified.

let _char: SingleGen<char> = SingleGen('a');

// `SingleGen` can also have a type parameter implicitly specified:

let _t = SingleGen(A); // Uses `A` defined at the top.

let _i32 = SingleGen(6); // Uses `i32`.

let _char = SingleGen('a'); // Uses `char`.

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

structs

The same set of rules can be applied to functions: a type T becomes generic when preceded by <T>.

Using generic functions sometimes requires explicitly specifying type parameters. This may be the case if the function is called where the return type is generic, or if the compiler doesn't have enough information to infer the necessary type parameters.

A function call with explicitly specified type parameters looks like: fun::<A, B, ...>().

struct A; // Concrete type `A`.

struct S(A); // Concrete type `S`.

struct SGen<T>(T); // Generic type `SGen`.

// The following functions all take ownership of the variable passed into

// them and immediately go out of scope, freeing the variable.

// Define a function `reg_fn` that takes an argument `_s` of type `S`.

// This has no `<T>` so this is not a generic function.

fn reg_fn(_s: S) {}

// Define a function `gen_spec_t` that takes an argument `_s` of type `SGen<T>`.

// It has been explicitly given the type parameter `A`, but because `A` has not

// been specified as a generic type parameter for `gen_spec_t`, it is not generic.

fn gen_spec_t(_s: SGen<A>) {}

// Define a function `gen_spec_i32` that takes an argument `_s` of type `SGen<i32>`.

// It has been explicitly given the type parameter `i32`, which is a specific type.

// Because `i32` is not a generic type, this function is also not generic.

fn gen_spec_i32(_s: SGen<i32>) {}

// Define a function `generic` that takes an argument `_s` of type `SGen<T>`.

// Because `SGen<T>` is preceded by `<T>`, this function is generic over `T`.

fn generic<T>(_s: SGen<T>) {}

fn main() {

// Using the non-generic functions

reg_fn(S(A)); // Concrete type.

gen_spec_t(SGen(A)); // Implicitly specified type parameter `A`.

gen_spec_i32(SGen(6)); // Implicitly specified type parameter `i32`.

// Explicitly specified type parameter `char` to `generic()`.

generic::<char>(SGen('a'));

// Implicitly specified type parameter `char` to `generic()`.

generic(SGen('c'));

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX