}
// `T` must implement `HasArea`. Any type which meets
// the bound can access `HasArea`'s function `area`.
fn area<T: HasArea>(t: &T) -> f64 { t.area() }
fn main() {
let rectangle = Rectangle { length: 3.0, height: 4.0 };
let _triangle = Triangle { length: 3.0, height: 4.0 };
print_debug(&rectangle);
println!("Area: {}", area(&rectangle));
//print_debug(&_triangle);
//println!("Area: {}", area(&_triangle));
// ^ TODO: Try uncommenting these.
// | Error: Does not implement either `Debug` or `HasArea`.
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
As an additional note, where clauses can also be used to apply bounds in some cases to be more expressive.
A consequence of how bounds work is that even if a trait doesn't include any functionality, you can still use it as a bound. Eq and Copy are examples of such traits from the std library.
struct Cardinal;
struct BlueJay;
struct Turkey;
trait Red {}
trait Blue {}
impl Red for Cardinal {}
impl Blue for BlueJay {}
// These functions are only valid for types which implement these
// traits. The fact that the traits are empty is irrelevant.
fn red<T: Red>(_: &T) -> &'static str { "red" }
fn blue<T: Blue>(_: &T) -> &'static str { "blue" }
fn main() {
let cardinal = Cardinal;
let blue_jay = BlueJay;
let _turkey = Turkey;
// `red()` won't work on a blue jay nor vice versa
// because of the bounds.
println!("A cardinal is {}", red(&cardinal));
println!("A blue jay is {}", blue(&blue_jay));
//println!("A turkey is {}", red(&_turkey));
// ^ TODO: Try uncommenting this line.
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
std::cmp::Eq, std::marker::Copy, and traits
Multiple bounds can be applied with a +. Like normal, different types are separated with ,.
use std::fmt::{Debug, Display};
fn compare_prints<T: Debug + Display>(t: &T) {
println!("Debug: `{:?}`", t);
println!("Display: `{}`", t);
}
fn compare_types<T: Debug, U: Debug>(t: &T, u: &U) {
println!("t: `{:?}`", t);
println!("u: `{:?}`", u);
}
fn main() {
let string = "words";
let array = [1, 2, 3];
let vec = vec![1, 2, 3];
compare_prints(&string);
//compare_prints(&array);
// TODO ^ Try uncommenting this.
compare_types(&array, &vec);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
A bound can also be expressed using a where clause immediately before the opening {, rather than at the type's first mention. Additionally, where clauses can apply bounds to arbitrary types, rather than just to type parameters.
Some cases that a where clause is usefuclass="underline"
• When specifying generic types and bounds separately is clearer:
impl <A: TraitB + TraitC, D: TraitE + TraitF> MyTrait<A, D> for YourType {}
// Expressing bounds with a `where` clause