Выбрать главу

fn main() {

let strings = vec!["tofu", "93", "18"];

let numbers: Result<Vec<_>, _> = strings

.into_iter()

.map(|s| s.parse::<i32>())

.collect();

println!("Results: {:?}", numbers);

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

This same technique can be used with Option.

fn main() {

let strings = vec!["tofu", "93", "18"];

let (numbers, errors): (Vec<_>, Vec<_>) = strings

.into_iter()

.map(|s| s.parse::<i32>())

.partition(Result::is_ok);

println!("Numbers: {:?}", numbers);

println!("Errors: {:?}", errors);

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

When you look at the results, you'll note that everything is still wrapped in Result. A little more boilerplate is needed for this.

fn main() {

let strings = vec!["tofu", "93", "18"];

let (numbers, errors): (Vec<_>, Vec<_>) = strings

.into_iter()

.map(|s| s.parse::<i32>())

.partition(Result::is_ok);

let numbers: Vec<_> = numbers.into_iter().map(Result::unwrap).collect();

let errors: Vec<_> = errors.into_iter().map(Result::unwrap_err).collect();

println!("Numbers: {:?}", numbers);

println!("Errors: {:?}", errors);

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The std library provides many custom types which expands drastically on the primitives. Some of these include:

   • growable Strings like: "hello world"

   • growable vectors: [1, 2, 3]

   • optional types: Option<i32>

   • error handling types: Result<i32, i32>

   • heap allocated pointers: Box<i32>

primitives and the std library

All values in Rust are stack allocated by default. Values can be boxed (allocated on the heap) by creating a Box<T>. A box is a smart pointer to a heap allocated value of type T. When a box goes out of scope, its destructor is called, the inner object is destroyed, and the memory on the heap is freed.

Boxed values can be dereferenced using the * operator; this removes one layer of indirection.

use std::mem;

#[allow(dead_code)]

#[derive(Debug, Clone, Copy)]

struct Point {

x: f64,

y: f64,

}

// A Rectangle can be specified by where its top left and bottom right

// corners are in space

#[allow(dead_code)]

struct Rectangle {

top_left: Point,

bottom_right: Point,

}

fn origin() -> Point {

Point { x: 0.0, y: 0.0 }

}

fn boxed_origin() -> Box<Point> {

// Allocate this point on the heap, and return a pointer to it

Box::new(Point { x: 0.0, y: 0.0 })

}

fn main() {

// (all the type annotations are superfluous)

// Stack allocated variables

let point: Point = origin();

let rectangle: Rectangle = Rectangle {

top_left: origin(),

bottom_right: Point { x: 3.0, y: -4.0 }

};

// Heap allocated rectangle

let boxed_rectangle: Box<Rectangle> = Box::new(Rectangle {

top_left: origin(),

bottom_right: Point { x: 3.0, y: -4.0 },

});

// The output of functions can be boxed

let boxed_point: Box<Point> = Box::new(origin());

// Double indirection

let box_in_a_box: Box<Box<Point>> = Box::new(boxed_origin());

println!("Point occupies {} bytes on the stack",

mem::size_of_val(&point));

println!("Rectangle occupies {} bytes on the stack",

mem::size_of_val(&rectangle));

// box size == pointer size

println!("Boxed point occupies {} bytes on the stack",

mem::size_of_val(&boxed_point));