Выбрать главу

fn main() {

let raw_p: *const u32 = &10;

unsafe {

assert!(*raw_p == 10);

}

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Некоторые функции могут быть объявлены как unsafe, то есть за корректность этого кода несёт ответственность программист, написавший его, вместо компилятора. Пример - это метод std::slice::from_raw_parts, который создаст срез из указателя на первый элемент и длины.

use std::slice;

fn main() {

let some_vector = vec![1, 2, 3, 4];

let pointer = some_vector.as_ptr();

let length = some_vector.len();

unsafe {

let my_slice: &[u32] = slice::from_raw_parts(pointer, length);

assert_eq!(some_vector.as_slice(), my_slice);

}

}

הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Для slice::from_raw_parts одно из предположений, которое должно быть поддержано, что переданный указатель указывает на допустимую память и что в памяти лежит значение правильного типа. Если эти инварианты не поддерживаются, то поведение программы не определено, и неизвестно, что произойдёт.

Rust быстро развивается и из-за этого могут возникнуть определённые проблемы совместимости, не смотря на усилия по обеспечению обратной совместимости везде, где это возможно.

   • Сырые идентификаторы

В Rust, как и во многих других языках программирования, существует концепция "ключевых слов". Эти идентификаторы что-то значат для языка и из-за этого вы не можете использовать их в качестве названия переменных, именах функций и других местах. Сырые идентификаторы позволяют использовать ключевые слова там, где они обычно не разрешены. Это особенно полезно, когда Rust вводит новые ключевые слова и библиотеки, использующие старую редакцию Rust, имеют переменные или функции с таким же именем, как и ключевое слово, введённое в новой редакции.

Например, рассмотрим крейт foo, скомпилированный с 2015 редакцией Rust, и который экспортирует функцию с именем try. Это ключевое слово зарезервировано для новой функциональности в 2018 редакции, из-за чего без сырых идентификаторов мы не можем назвать так функцию.

extern crate foo;

fn main() {

foo::try();

}

Вы получите ошибку:

error: expected identifier, found keyword `try`

--> src/main.rs:4:4

|

4 | foo::try();

| ^^^ expected identifier, found keyword

Вы можете записать это при помощи сырого идентификатора:

extern crate foo;

fn main() {

foo::r#try();

}

Некоторые темы не совсем соответствуют тому, как вы программируете, но предоставляют вам инструменты или инфраструктуру, которые делают лучше для всех. Эти темы включают:

   • Документацию: генерирование пользовательской документации с использованием rustdoc.

   • Playpen: интегрирование Rust Playpen (также известного как Rust Playground) в свою документацию.

Используйте cargo doc для сборки документации в target/doc.

Используйте cargo test для запуска всех тестов (включая документационные тесты) и cargo test --doc для запуска только документационных тестов.

Эти команды, по мере необходимости, будут соответствующим образом вызывать rustdoc (и rustc).