Выбрать главу

Сведения о состоянии бортовых систем, режимах их работы и других характеристиках дают радиотехнические станции телеметрического контроля. Как и при радиоконтроле орбиты, телеметрическая информация нужна для управления полетом спутников, а иногда и траекторных расчетов (например, момент выключения тормозной двигательной установки при спуске космического аппарата на Землю). Следует, правда, отметить и ее самостоятельное значение. Ведь конечная цель космических запусков — получение информации. А разницы в технике передачи научной (прикладной) и телеметрической информации нет. Отличие, может быть, заключается лишь в том, что для приема научной (прикладной) информации используются специальные пункты ее приема.

Подготовка радиотехнических станций к сеансу связи начинается с включения и автономной проверки отдельных постов аппаратуры, установки заданных режимов и кодов, настройки на заданные частоты. Затем переходят к комплексной проверке станции или группы станций, участвующих в предстоящем сеансе. Подготовка к сеансу связи включает также выставку антенн в исходное положение по целеуказаниям. В расчетное время начинается поиск сигналов, посылаемых со спутника или межпланетной станции. После их обнаружения следует управление по программе, которая разрабатывается на предстоящий сеанс связи операторами или с помощью ЭВМ.

Первоначально пункты оснащались специализированными станциями радиоконтроля орбиты, передачи команд, приема телеметрической и научной (прикладной) информации. По мере накопления опыта стало понятно, что решение возложенных на них задач целесообразно осуществлять одновременно. Так возникли многофункциональные радиотехнические системы, представляющие в настоящее время основной парк радиотехнического оборудования КИП.

Трасса полета

При запуске космического аппарата специалисты КИК каждый раз решают две взаимосвязанные задачи. Первая заключается в расчете трассы полета, вторая — в определении конкретных пунктов, способных обеспечить благоприятные условия работы со спутником. Это необходимо прежде всего для организации устойчивой двусторонней радиосвязи с Землей, без чего невозможны управление полетом, контроль траекторного движения, передача научной и телеметрической информации.

Эти задачи нередко бывают и противоречивыми. Дело в том, что целевое назначение каждого спутника требует вполне определенной орбиты, и может случиться так, что часть наземных измерительных средств будет перегружена работой, в то время как другая использоваться слабо. Поставленная проблема напоминает ту, которую решают работники городского транспорта: как проложить маршруты, чтобы обеспечить удобную и быструю доставку людей к месту их следования. Естественно, чем крупнее город, тем труднее совместить удобство и быстроту передвижения. А в космосе все обстоит гораздо сложнее.

Чтобы понять сущность рассматриваемых задач, совершим небольшой экскурс в теорию космического полета. Если бы не было вращения Земли, возмущений, вносимых ее фигурой и атмосферой, Солнцем, другими планетами в орбиту полета, то трасса — след летящего спутника на поверхности нашей планеты — все время оставалась бы неизменной. Но Земля вращается, и это вызывает смещение трассы с каждым витком. Как же его определяют специалисты?

Точное решение задачи возможно только с помощью ЭВМ, но для оценки достаточно и элементарных расчетов. Поскольку скорость вращения Земли вокруг своей оси составляет 15 градусов в час, то нетрудно определить и смещение трассы за виток. Если период обращения спутника составляет 90 минут, то начало очередного витка сместится на запад на 22,5 градуса, или на 2500 километров (на экваторе один градус равен 111 километрам). С увеличением широты количество километров, соответствующее одному градусу, уменьшается.

Форма трассы в основном определяется периодом обращения спутника, скоростью вращения Земли и наклонением плоскости орбиты. Период вносит, пожалуй, наибольшее разнообразие в очертание трассы. Для абсолютного большинства низколетящих спутников с направлением движения на северо-восток либо юго-восток трасса представляется синусоидой. С увеличением высоты форма ее непрерывно изменяется. Сжимаясь, словно пружина, она по достижении периода, равного 24 часам, превращается в восьмерку. При дальнейшем его увеличении форма трассы в общем случае не описывается известными геометрическими фигурами. Значит, чем выше летит спутник, тем большую роль в очертаниях трассы играет вращение Земли.