Выбрать главу

Геостационарные спутники проще всего выводить на орбиту со стартовых площадок, расположенных на экваторе. И вот почему. Изменение наклонения после выведения космического аппарата на орбиту — самая дорогостоящая операция. Например, для полета на Луну с территории СССР требуется меньше топлива, чем для выведения спутника на стационарную орбиту, хотя последняя более чем в 10 раз ближе к нашей планете. Из всей энергии, затрачиваемой в этом случае на выведение, примерно половина уходит на поворот плоскости орбиты. Однако существует схема, которая позволяет экономить топливо и в общем случае.

Если спросить любого человека, целесообразно ли лететь на самолете из Москвы в Киев через Владивосток, то он, несомненно, подумает, что с ним шутят. Ясно, что такой обходной маневр связан с огромной и ненужной затратой топлива. Иначе обстоит дело в космосе, в частности при выведении спутника на стационарную орбиту. Для стартовой площадки, расположенной, например, выше 49 градусов по широте, с орбиты ожидания спутник переводится на переходную орбиту с высотой апогея, намного превышающей высоту стационарной орбиты.

В апогее осуществляется второе включение двигателя для перехода на вторую переходную орбиту, которая находится уже в плоскости экватора и перигеем касается стационарной. Третий раз двигательная установка включается в перигее второй переходной орбиты, то есть на высоте стационарной орбиты, для того чтобы снизить скорость спутника и предотвратить его уход вверх. Как ни парадоксально на первый взгляд, но именно использование переходной орбиты с апогеем, намного превышающим высоту стационарной орбиты, дает энергетический выигрыш. Оказывается, что с увеличением высоты энергозатраты на изменение наклонения орбиты, которые являются определяющими в общей доле затрат, уменьшаются. В итоге схема становится более экономичной.

Естественно, приведенная схема не единственная. В зависимости от обстановки, конкретных условий возможны и другие.

Космические антенны

Многие космические объекты, порой даже невидимые в самые сильные оптические телескопы, удается регистрировать по испускаемому ими радиоизлучению. А ведь радиофон несет в миллионы раз меньшую энергию, чем световой поток. Оказывается, такой разительный контраст между видимым и радиоизлучением обусловлен особенностями поглощения и рассеяния электромагнитных волн на пути от источника к приемнику.

Космические радиотехнические средства используются почти исключительно в УКВ-диапазоне. Дело тут вот в чем. Прилегающий к поверхности нашей планеты газовый слой (тропосфера) содержит повышенную концентрацию водяных паров и кислорода, которые поглощают волны миллиметрового и оптического диапазона. А в ионосфере (50–280 километров) находится несколько слоев с повышенной концентрацией свободных электронов, которые не пропускают длинные радиоволны. Отразившись, как от зеркала, они возвращаются на Землю.

Это свойство, необходимое и достаточное для земной радиосвязи, становится основной помехой для космической. Волны УКВ-диапазона (сантиметровые, дециметровые и метровые) проходят сквозь эти преграды. Поэтому они используются для связи со спутниками. Что же касается возможности приема, то она прежде всего связана с площадью антенн.

Диаметр зеркала самого крупного, в мире оптического телескопа равен 6 метрам, а поворотного радиотелескопа — 100 метрам. Такое увеличение площади антенны позволило значительно раздвинуть рамки наблюдения Вселенной — до расстояния 10 миллиардов световых лет. Осваивать такие дальности связи в космонавтике пока нет необходимости. Однако этот пример наглядно иллюстрирует не только возможности радиоинструментов, но и направление развития космических радиосистем.